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ABSTRACT

Physical activity is any bodily movement that results in caloric expenditure. One important

aspect of physical activity research is the assessment of usual (i.e., long-term average) physical

activity in the population, in order to better understand the links between physical activity

and health outcomes. Daily or weekly measurements of physical activity taken from a sample

of indivuals are prone to measurement errors and nuisance effects, which can lead to biased

estimates of usual physical activity parameters. Fortunately, statistical models can be used to

account and adjust for these errors in order to give more accurate estimates of usual physical

activity parameters.

In this dissertation we develop statistical methods for estimating parameters of usual phys-

ical activity. In Chapter 1 we outline metrics and instruments used for physical activity assess-

ment, and review current approaches for modeling usual physical activity and usual dietary

intake for regularly consumed food components. In Chapter 2 we develop a model for physi-

cal activity data from the National Health and Nutrition Examination Survey (NHANES). A

linear regression is defined to model objective monitor-based physical activity as a function

of self-reported physical activity variables and demographic variables. The fitted model is

used to estimate mean daily physical activity levels for demographic groups in the population.

In Chapter 3 we develop a method for estimating usual daily energy expenditure parameters

from data collected using a self-report instrument and an objective monitoring device. Our

method is an extension of existing methods that utilize measurement error models. We il-

lustrate our method with preliminary data from the Physical Activity Measurement Survey

(PAMS) collected using a SenseWear Pro armband monitor and a 24-hour physical activity

recall.
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CHAPTER 1 A REVIEW OF PHYSICAL ACTIVITY

MEASUREMENT METHODS AND MODELS

1.1 Introduction

Physical activity is any bodily movement produced by skeletal muscles that results in caloric

expenditure (Casperson et al. 1985). Participation in regular physical activity has been linked

to health benefits such as reduced risk of obesity (Grundy et al. 1999), improved mental health

(Kritz-Silverstein et al. 2001), and improved cognitive function (Yaffe et al. 2001). Moreover,

lack of participation in regular physical activity has been linked to a number of health concerns

such as heart disease (Berlin and Colditz 1990), diabetes (Manson et al. 1991), osteoporotic

fractures (Kannus 1999), and cancers (Lee 2003; Thune et al. 1997; Friedenreich and Oren-

stein 2002). Due to the recognized relationships between physical activity and various health

outcomes, researchers have established recommendations for physical activity engagement. A

recent report from the Surgeon General recommends that people engage in at least 150 min-

utes of moderate-intensity physical activity per week, or alternatively, at least 75 minutes of

vigorous-intensity physical activity per week (U.S. Department of Health and Human Services

2008).

With these recommendations in place, researchers must assess whether or not individuals

in the population adhere to the recommendations and whether or not the recommendations

are reasonable in terms of improving health. Measuring and analyzing physical activity data

from individuals in the population can be challenging. First, researchers must decide how to

measure physical activity from individuals in the population. A variety of physical activity

metrics are used to measure and assess physical activity. Second, researchers must decide

how to analyze physical activity data collected from a sample of individuals. One important
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goal in physical activity research is the assessment of usual or habitual physical activity in

the population (Shephard 2003). Usual physical activity can be thought of as an individual’s

long-term average physical activity, such as his or her average daily physical activity level

over the course of a year, and cannot be measured directly because of day-to-day variation in

physical activity and errors in physical activity measurements. Statistical models can be used

for estimating usual physical activity parameters in a population by adjusting for measurement

errors and other forms of variation that exist in physical activity measurements. The estimated

parameters can then be used to evaluate adherence to physical activity guidelines and to study

the relationships between usual physical activity and health outcomes.

In this chapter, we review current approaches for measuring and modeling physical activity

data. In Section 1.2 we define common metrics used for physical activity assessment. In Section

1.3 we present some of the instruments that are used to measure physical activity. In Section

1.4 we examine statistical methods used for modeling physical activity and related methods

used for modeling dietary intake. In Section 1.5 we give a summary of the remaining chapters.

1.2 Physical Activity Metrics

Physical activity can be measured as the energy cost required to engage in the activity, as

the time spent in a specific activity or behavior, or via indirect outcomes that are correlated

with physical activity metrics. In this section, we review the methods used for measuring

physical activity.

1.2.1 Metabolic Equivalents

An important concept in physical activity measurement is the metabolic equivalent (MET).

One MET is the energy expenditure at an individual’s resting state, which is defined to be

approximately 3.5 ml/kg/min of oxygen consumption (Welk 2002a). Intensities of activities

are measured in MET units, which are defined relative to the baseline level of 1 MET. The

Compendium of Physical Activities (Ainsworth et al. 2000; Ainsworth et al. 1993) lists MET

values associated with various activities and can be used to quantify the intensities of activities
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reported by individuals in free-living situations. A limitation of using MET values from the

compendium to standardize physical activity levels across individuals is that the process fails

to account for adaptability of the body to physical activity (Welk 2002a). That is, the same

level of activity can be perceived differently for a physically fit person and an unfit person.

Running at 5 mph may barely quantify as “physical activity” for a physically fit person, but

may be considered very challenging for an unfit person.

1.2.2 Energy Expenditure

One of the most common physical activity metrics is energy expenditure. Energy expen-

diture is a measure of the energy cost of physical activity (Schutz et al. 2001) and can be

expressed in kilocalories (kcal) per unit of time (e.g., kcal/d or kcal/wk). One MET is equiva-

lent to approximately 1 kcal/kg/hr, so that an individual with body weight W (in kilograms)

who engages in T hours of an activity with MET value V expends K = V TW kcals of energy

for the activity during those T hours (Ainsworth 2009). The accumulation of kcals for all

non-resting activities (i.e., activities with associated MET values greater than one) during the

course of a day represents physical activity energy expenditure (PAEE) and is often measured

in kcal/d (Schutz et al. 2001). The sum of PAEE and daily resting energy expenditure (REE)

(kcals expended during rest) is known as total energy expenditure (TEE), which is also mea-

sured in kcal/d (Schutz et al. 2001). Physical activity level (PAL) is the ratio of TEE to

REE and is a useful alternative to PAEE as an index of energy expenditure related to physical

activity over a 24-hour period (Schutz et al. 2001).

Energy expenditure can also be measured in MET-hours (or MET-minutes) per unit of

time. If an individual engages in an activity with MET value V for T hours, he or she

engages in V T MET-hours of activity. MET-hours can be accumulated for all activities (resting

and non-resting activities) during the course of a day or can just be accumulated for non-

resting activities. If both resting and non-resting activities are considered, a measure of energy

expenditure in MET-hours is similar to TEE, and an individual who is at a MET level of 1 for

the entire day engages in 24 MET-hours of activity. If only non-resting activity is considered,
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a measure of energy expenditure in MET-hours is similar to PAEE, and the same individual

at a MET level of 1 for the entire day engages in 0 MET-hours of activity. Whether to express

energy expenditure in kilocalories or in MET-hours is a decision left to the researcher. If there

is interest in comparing energy intake to energy expenditure, kilocalories is the preferred unit

of measure. If there is interest in comparing the intensity levels for various types of activity, or

in comparing physical activity levels across individuals with varying weights, MET-hours may

be the preferred unit of measure.

1.2.3 Physical Activity Groups

Oftentimes researchers are interested in the amount of time people spend engaging in

activity that is classified into activity groups or behaviors, where the activity groups are usually

defined by intensity level. Most researchers classify an activity as light intensity if it has a

MET value in the 1-3 range, as moderate intensity if it has a MET value in the 3-6 range, and

as vigorous intensity if it has a MET value greater than 6 (Troiano et al. 2008; Crouter et al.

2006; Ainsworth et al. 2000). A common metric used to classify activity by intensity is time

spent in moderate to vigorous physical activity (MVPA), which measures the amount of time

individuals engage in activity at or above 3 METs in a day or week or month (Troiano et al.

2008). This metric is important for evaluating the adherence of physical activity guidelines,

which are defined by intensity level of activity.

Physical activity groups may also be defined by factors other than intensity of activity.

For example, researchers may be interested in measuring the amount of time people spend

in activity in specific contexts, such as for an individual’s occupation, transportation, leisure,

household chores, and exercise. This type of physical activity assessment is gaining in pop-

ularity as interest in studying sedentary behaviors from occupational and household settings

grows (Ainsworth 2009).
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1.2.4 Other Metrics

When physical activity metrics are unavailable, other metrics related to physical activity

can be used to indirectly assess physical activity. Heart rate (HR) measured in average beats

per minute is one metric that is related to physical activity (Schutz et al. 2001) and is usually

measured with heart rate monitors (Janz 2006). Accelerometers measure activity intensity via

the average number of counts per minute (Troiano et al. 2008; Welk 2002b), and pedometers

measure the number of steps taken in a day (Ainsworth 2009; Janz 2006). These types of

metrics can be analyzed directly or can be converted into estimates of physical activity levels

using calibration functions, which are discussed in Section 3.2 (Schutz et al. 2001; Welk 2005;

Crouter et al. 2006; Moy et al. Submitted).

1.3 Physical Activity Instruments

In this section, we describe three types of instruments used for measuring physical activity:

laboratory instruments, monitor-based instruments, and self-report instruments.

1.3.1 Laboratory Instruments

Three common laboratory-based methods used for measuring physical activity are doubly

labeled water (DLW), direct calorimetry, and indirect calorimetry. For the DLW method,

individuals drink water containing isotopically labeled hydrogen and oxygen atoms on multiple

occasions and provide urine samples before and after drinking the water (Starling et al. 1999).

Usually the final urine sample is collected 14 days after the water is first administered (Bratteby

et al. 1998). An estimate of TEE is obtained by comparing carbon dioxide production in pre-

dose and post-dose urine samples (Bratteby et al. 1998). Estimates of PAEE and PAL can be

indirectly obtained by using an estimate of REE from some external source such as indirect

calorimetry (Bratteby et al. 1998; Starling et al. 1999; Bouten et al. 1996). The DLW

method is often referred to as the “gold standard” for measuring energy expenditure (Lagerros

and Lagiou 2007; Bouten et al. 1996; Bratteby et al. 1998; Starling et al. 1999; Moy et al.

Submitted) and can be used to measure energy expenditure in free-living subjects without
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influencing daily routines (Bratteby et al. 1998). But the DLW method is also very costly

to implement (Johnson et al. 1998; Starling et al. 1999) and only provides estimates of TEE

for a one or two week period (Bouten et al. 1996). Thus, the DLW method cannot be used

for measuring MVPA or other physical activity variables related to the behavior or context of

physical activity.

With direct calorimetry, energy expenditure is measured through production of heat from

individuals who are contained in special chambers (LaPorte et al. 1985). Direct calorimetry is

accurate for measuring energy expenditure, but is also expensive, and limits measurement to

the laboratory environment (LaPorte et al. 1985; Lagerros and Lagiou 2007). With indirect

calorimetry, energy expenditure is measured by the consumption of oxygen (LaPorte et al.

1985), where individuals are required to wear a face mask or a mouthpiece with a nose clip and

a container that collects expired air (LaPorte et al. 1985). Like direct calorimetry, indirect

calorimetry is accurate for measuring energy expenditure, but is also expensive and unrealistic

for measurement under free-living conditions (Lagerros and Lagiou 2007). Because of the

limitations associated with direct and indirect calorimetry, DLW remains the only stand alone

“gold standard” for measuring energy expenditure in free-living subjects.

1.3.2 Monitor-based Instruments

Monitor-based instruments are instruments that individuals wear on their bodies as they

go about their day. The monitors record information related to an individual’s activity by

keeping track of bodily movements and other bodily functions, such as heart rate and body

temperature. Accelerometers, pedometers, heart rate monitors, and multi-sensor devices are

all instruments used to measure physical activity from individuals in free-living conditions. In

this section, we review research on accelerometers and multi-sensor devices, which are used

most often in contemporary physical activity studies (Welk 2002b; Moy et al. Submitted).

See Schutz et al. (2001) for information on heart rate monitors and Ainsworth (2009) for

information on pedometers.

To date, the most commonly used monitor-based instrument for measuring physical activity



7

is the accelerometer (Welk 2002b; Janz 2006; Ward et al. 2005; Welk 2005; Trost et al. 2005;

Strath et al. 2005). Accelerometers are usually worn on the waist or hips (Welk 2002b; Ward

et al. 2005; Ainsworth 2009), but can also be worn on the wrist or ankle (Ward et al. 2005).

Accelerometers measure acceleration, which is the change in velocity over time (Welk 2002b).

The data produced by the accelerometer are intensity counts, where an increasing number of

counts reflects more intense activity (Ainsworth 2009). There are many commercially available

accelerometers on the market (Ward et al. 2005; Welk 2005). Some monitors measure acceler-

ation in only one direction, while other monitors measure acceleration in multiple dimensions

(Welk 2002b; Welk et al. 2004). The most widely used accelerometer is the Actigraph, which

is a one-dimensional accelerometer that measures vertical acceleration (Leenders et al. 2006;

Welk 2002b; Troiano et al. 2008).

Accelerometer research is extensive and a number of studies have investigated the reliability

and validity of various accelerometers used for field-based research (Welk 2002b; Trost et al.

2005; Ward et al. 2005; Welk et al. 2004). Some important points made in the literature are:

• no one accelerometer is vastly superior to another (Trost et al. 2005; Ward et al. 2005)

• selecting a type of accelerometer is primarily an issue of practicality (Trost et al. 2005)

• using multiple accelerometers on any one individual as opposed to a single accelerometer

may be beneficial (Strath et al. 2005), but one monitor will suffice in most cases (Troiano

2005; Trost et al. 2005)

• the trunk (i.e., hip or lower back) is the best place to wear an accelerometer (Trost et al.

2005; Ward et al. 2005)

• 3 to 5 days of monitoring is required to reliably estimate usual or habitual activity in

adults (Trost et al. 2005)

• 4 to 9 days of monitoring is required to reliably estimate usual or habitual activity in

children and adolescents (Trost et al. 2005)
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• accelerometers do a better job of measuring general locomotor tasks as opposed to upper-

body movements (Welk 2002b)

• different monitors produce output that is measured in different units making it difficult

to compare results across studies (Welk 2002b).

One area of accelerometer research that has gained popularity is calibration research (Welk

2005). Calibration, as defined by physical activity researchers, is the conversion of accelerome-

ter intensity counts into useful physical activity metrics such as energy expenditure or MVPA

(Welk 2002b; Welk 2005). Calibrating intensity counts into energy expenditure usually involves

the development of a regression equation that defines a linear relationship between intensity

counts and energy expenditure, where estimates of energy expenditure are obtained by plug-

ging intensity counts into the fitted regression equation (Welk 2002b). Unfortunately, energy

expenditure estimates obtained from fitted linear regression equations have been found to be

fairly inaccurate when applied to individuals who wear accelerometers in free-living situations

(Welk 2002b). As a consequence, Crouter et al. (2006) consider using two regression equations

to estimate separately energy expenditure for walking and running activity and for leisure

time activity. Calibrating intensity counts into MVPA involves determining intensity count

cutpoints to represent moderate and vigorous intensity (Welk 2002b). For example, Freedson

et al. (1998) consider counts per minute from the Actigraph of 1951 or lower, 1952-5724, and

5725 or higher to represent activity of light, moderate, and vigorous intensity, respectively.

Other methods for converting intensity counts into time-based physical activity metrics have

been proposed by Nichols et al. (1999) and Hendelman et al. (2000), among others. Unfortu-

nately, having multiple methods for measuring MVPA from accelerometers makes it difficult

to compare results across studies (Welk 2002b).

Advances in technology have led to the development of multi-channel or multi-sensor devices

that utilize pattern recognition algorithms to estimate physical activity (Moy et al. Submit-

ted). Three such devices are the Actiheart, the SenseWear Pro armband monitor, and the

Intelligent Device for Energy Expenditure and Physical Activity (IDEEA) monitor (Moy et

al. Submitted). The Actiheart uses integrated information on heart rate and acceleration to
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estimate PAEE (Moy et al., Submitted). Studies have shown that integrating heart rate and

motion sensor information improves accuracy of PAEE estimates (Strath et al. 2001), but this

technique is still difficult to implement under free-living conditions (Moy et al. Submitted).

The SenseWear Pro armband monitor is a wireless armband worn on the upper arm that in-

tegrates information from two accelerometers and a variety of heat and pulse sensors (Moy et

al. Submitted). The SenseWear monitor is of minimal burden to researchers and survey par-

ticipants, registers upper body movements typically missed by hip-worn accelerometers, and is

highly accurate for estimating PAEE (Jakicic et al. 2004; Fruin and Rankin 2004). However,

this monitor is also inadequate for detecting certain types of activities, such as bicycling, and

must be taken off during showering and swimming (Moy et al. Submitted). The IDEEA mon-

itor is composed of 5 integrated sensors connected by wires that are placed on different parts

of the body. This device can measure physical activity fairly accurately (Zhang et al. 2003)

and can store a large amount of data (Moy et al. Submitted), but is also fairly expensive (at

least 3-5 times more expensive than the Actiheart and SenseWear monitor) and is a significant

burden to survey participants since multiple sensors must be placed all over the body (Moy et

al. Submitted).

1.3.3 Self-report Instruments

With self-report instruments, individuals are asked to report on their activities. Individuals

may be asked to recall activities from a previous day, week, or month, or may be asked to

keep a log or record of their activities as they go about their day. Information on activity

type (e.g., aerobic, anaerobic, occupational, household), frequency (e.g., number of times per

week), intensity (e.g., energy cost), and duration (e.g., how many minutes per occasion) can be

gathered using self-report instruments (Matthews 2002). The four general classes of self-report

instruments are records/logs, global self-reports, recall questionnaires, and quantitative history

questionnaires (Matthews 2002; Ainsworth 2009).

With physical activity records or logs, individuals provide detailed information on physical

activities as they occur during the day. Logs can provide fairly accurate information on physical
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activity because the activities are reported on as they occur, which reduces the likelihood of

misreporting on activity. However, activity logs can be a significant burden to individuals

(Ainsworth 2009) and may influence individuals to engage in more intense activity than normal,

which is a phenomenon known as reactivity (Matthews 2002).

With global self-reports, individuals are asked to provide a generic classification of their

usual activity patterns over a long period of time period (e.g., a year) via a small number

of questions (Matthews 2002). These types of instruments rely more on generic memories

(i.e., recollections of general events or patterns of events from the past) instead of episodic

memories (i.e., specific recollections of individual and innumerable autobiographical events),

and are therefore reliant on individuals’ abilities to accurately assess their own usual physical

activity (Matthews 2002). Global self-reports are used primarily as screening tools in clinical

settings and are not very useful for understanding type, frequency, intensity, and duration of

activity (Matthews 2002).

Recall questionnaires ask individuals to recall their activity from the recent past (e.g., the

previous day or week). These questionnaires are usually short (5 to 15 minutes) and are de-

signed to classify individuals into broad physical activity categories (Matthews 2002; Ainsworth

2009). Recall questionnaires are useful for classifying activity into groups (e.g., exercise, leisure,

occupation, transportation activity) and for assessing type, frequency, intensity, and duration

of activities (Matthews 2002; Ainsworth 2009). Recalling activity from a previous day or week

reduces the effects of reactivity compared to records or logs, but can still be difficult for re-

spondents. The entire process of answering a question from a questionnaire requires question

comprehension (i.e., an understanding of the question), a decision about the question (i.e., if

the question is clear and answerable), retrieval from memory (i.e., the gathering of information

to answer the question), and response generation (i.e., organizing the memories into a verbal

or written response) (Matthews 2002). Such a complex process can often lead to misreporting

on activity (Ainsworth 2009; Matthews 2002).

Quantitative history questionnaires are more detailed than recall questionnaires and require

individuals to respond to anywhere from 15 to 60 questions about physical activity from their
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past (Matthews 2002; Ainsworth 2009). These instruments are useful for estimating energy

expenditure and MVPA from the previous day (Matthews et al. 2000), week (Sallis et al.

1985) and month (Dipietro et al. 1993), and are also useful for gathering information on where

activities are occurring (e.g., at home, at work, or in transit). These types of questionnaires

usually take considerable time to administer and may be inappropriate for some large-scale

surveys settings (Ainsworth 2009).

1.4 Modeling Physical Activity

In many physical activity studies, researchers are interested in studying usual or habitual

physical activity in a population (Shephard 2003), where usual physical activity broadly refers

to long-term average physical activity. More specifically, an individual’s usual daily energy

expenditure is his or her average daily energy expenditure over a long period of time, such as one

year. An individual’s measurement of physical activity from a day or week will be different from

his or her usual physical activity level because of daily changes in physical activity and because

of measurement errors. Consequently, using unadjusted physical activity measurements to

estimate usual daily physical activity in the population may lead to biased estimates of usual

physical activity parameters. Statistical models can be utilized to account and adjust for

the errors and biases in physical activity data, which allows for more accurate estimation of

usual physical activity parameters. In this section, we highlight sources of variation and bias in

physical activity data (Section 1.4.1), provide a brief introduction to measurement error models

using a simple example (Section 1.4.2), and discuss statistical modeling approaches that are

relevant to physical activity research (Section 1.4.3) and dietary intake research (Section 1.4.4).

1.4.1 Variation and Bias in Physical Activity Measurement

The difference in observed physical activity and usual physical activity for an individual is

generally attributed to measurement errors and nuisance effects, while the between-individual

variation in usual physical activity may be influenced by other demographic indicators such as

age, gender, and race/ethnicity. We define measurement error to be the difference between a
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measurement of physical activity and the actual value of physical activity for a given day. For

example, if Yij is a measurement of energy expenditure in MET-minutes for individual i on

day j and Tij is the actual energy expenditure in MET-minutes for individuals i on day j, then

the measurement error in the measurement is Eij = Yij − Tij . Measurement error can exist

in physical activity data collected from any type of instrument. Measurement error in DLW

measurements is minimal and is usually due to bodily changes that occur naturally (Schoeller

and van Santen 1982). Measurement error in monitor-based measurements is mainly due to

the inability of monitors to capture the full range of activities in which an individual engages

(Welk et al. 2004; Moy et al. Submitted). For example, if an individual wears an accelerometer

around his waist and engages in activity with lots of upper arm movement, the accelerometer

may not register all of the upper arm movement, and the measurement of activity may be less

than the actual amount of activity the individual engaged in, resulting in measurement error.

Errors in measurements from monitors may also come from calibration, where monitor data

are converted into physical activity metrics (Welk 2002b). If the calibration function used to

convert monitor data into measurements of energy expenditure is not properly specified, mea-

surements may be inaccurate. Measurement error in self-report data exists because individuals

do not always accurately report on their activity. Social desirability effects may influence in-

dividuals to report more activity than they actually do (Adams et al. 2005; Warnecke et al.

1997). Cognitive limitations associated with recalling activity may cause individuals to un-

derreport on their activity if they forget certain activities they engaged in during the previous

day or week (Bassett et al. 2000; Matthews 2002). The terminology used in physical activity

questionnaires may be confusing to individuals and lead to misreporting on activity (Sallis and

Saelens 2000). For example, if a questionnaire asks an individual to report on his or her mod-

erate intensity activity, the individual may interpret moderate activity as only activity related

to exercise and not activity related to household chores such as mowing the lawn or cleaning

the house, which may be performed at a moderate intensity level. Reactivity is another factor

that may lead to measurement error in either accelerometer or self-reported physical activity

data, because individuals may engage in, or report engaging in, more activity than they would
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do normally (Matthews 2002).

Individuals deviate from their usual physical activity levels on a short-term basis. That

is, an individual may be more or less active than he or she usually is on any given day. For

example, if Tij is the actual energy expenditure in MET-minutes for individual i on day j and

Ti is the usual daily energy expenditure of individual i, then the deviation in actual energy

expenditure relative to usual daily energy expenditure is Dij = Tij−Ti. This difference between

actual physical activity and usual physical activity can be attributed to nuisance effects, which

cause individuals to change their physical activity habits on a short-term basis. One nuisance

effect considered by researchers is seasonality (Matthews et al. 2001; Levin et al. 1999). An

individual may be more active than he or she usually is in the summer because the warmer

summer weather allows the individual to engage in more outdoor activity. On the other hand,

an individual may be less active than he or she usually is in the winter because the colder winter

weather keeps the individual indoors more often. Another nuisance effect is day-of-week effect

(Matthew et al. 2002). An individual may be more active than he or she usually is on the

weekend when there is more time to exercise and may be less active on weekdays when there

is less time to exercise because of work. Time-in-sample effect is a third factor that may lead

to differences between actual physical activity and usual physical activity. An individual may

change his or her physical activity in response to participating in a survey.

Individuals in the population have varying levels of usual physical activity because some

individuals are, on average, more active than other individuals. Demographic factors such

as gender (Troiano et al. 2008; Ainsworth 2009; Ferrari et al. 2007), age (Troiano et al.

2008; Irwin et al. 2001; Ainsworth 2009), race and/or ethnicity (Marshall et al. 2007), and

educational status (Hebert et al. 2002; Lagerros et al. 2006) are all factors that may be

associated with variation in usual physical activity. For example, men may be more active

than women because of social pressures, which encourage men to engage in more intense

activity on a regular basis. Younger adults in the population may be more active than older

adults because younger adults are generally more capable of engaging in more intense activity

for longer periods of time than older adults. Individuals from a certain race or ethnicity group
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may be, on average, more active than individuals in the general population because of cultural

or ethnic traditions that encourage engagement in intense physical activity. Individuals with

less education may be more active than individuals with higher education because many of the

jobs performed by individuals with less education may be more physically strenuous than jobs

performed by individuals with more education.

1.4.2 A Measurement Error Model

Measurement error models (Fuller 1987; Carroll et al. 2006) can be used to model the

variation and bias in physical activity data and to estimate parameters of usual daily physical

activity for the population. In this section, we present a simple measurement error model to

motivate the use of measurement error models for assessment of physical activity data. More

complex measurement error models are presented in Sections 1.4.3 and 1.4.4.

Suppose that a simple random sample of n individuals is selected and measured for physical

activity using a monitoring device that is known to provide fairly accurate measurements of

physical activity. Let Ti be the true usual daily physical activity for individual i and let Yij be

a monitor measurement of physical activity for individual i on day j, where j = 1, 2. Assume

that Ti and Yij are given in the same units (e.g., kcal/d or MET-hours/d). Consider the

measurement error model,

Yij = Ti + eij . (1.1)

Under this model, the term eij accounts for the difference between Yij and Ti due to measure-

ment error and day-to-day variability in physical activity. Model (1.1) is often referred to as

the classical measurement error model (Carroll et al. 2006).

The parameters of model (1.1) can be estimated given model assumptions. For example,

assume that Ti
ind∼ (µT , σ

2
T ), eij

ind∼ (0, σ2e), and that Cov(Ti, eij) = 0 for all i and j. Let

Zi =

 Yi1+Yi2
2

Yi1 − Yi2

 ,
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and let

m1 = n−1
n∑
i=1

Zi

and

m2 = (n− 1)−1
n∑
i=1

(Zi − Z̄)(Zi − Z̄)′.

Then

E{m1} =

 µT

0


and

E{m2} =

 σ2T + 0.5σ2e 0

0 2σ2e

 .

By equating the sample moments to their expectations, we obtain the method of moments

estimators

µ̂T = m1,

σ̂2T = m11 − 0.25m22,

σ̂2e = 0.5m22,

where m1 is the first element in m1, and m11 and m22 are the first and second diagonal

elements in m2, respectively.

Under model (1.1), a measurement of physical activity is assumed to be unbiased for true

usual physical activity for individual i in that

E{Yij |i} = Ti.

This assumption may be violated when self-report instruments are used to measure physical

activity, because individuals are known to misreport on their activity (see Section 1.4.1). An

alternative measurement error model for self-report measurements is

Yij = β0 + β1Ti + eij , (1.2)
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where the parameters β0 and β1 account for a systematic linear bias in the self-reported mea-

surements. Given the same model assumptions as before,

E{Yij |i} = β0 + β1Ti,

and Yij is a biased measure of usual physical activity when (β0, β1) 6= (0, 1). Measurements

from an unbiased reference instrument are needed to estimate the bias parameters β0 and β1

from model (1.2). Models of this form are discussed in more detail in the following sections.

1.4.3 Physical Activity Models

To date, use of measurement error models in assessment of physical activity data is limited

to two papers, Ferrari et al. (2007) and Spiegelman et al. (1997). In both papers, the authors

develop models as a means to validate self-report instruments for measuring physical activity.

These models provide context for measurement error model development in Chapter 3.

1.4.3.1 Ferrari et al. Model

Ferrari et al. (2007) developed a model for sources of measurement error in physical

activity data obtained from a study conducted at the Alberta Cancer Board from 2002-2003

(Friedenreich et al. 2006). One of the goals of the study was to validate a self-administered

physical activity questionnaire which measured physical activity over the course of one year.

One hundred and fifty four individuals were recruited to complete the study. During the course

of one year, each study participant wore an accelerometer for four 1-week periods approximately

12 weeks apart. After wearing the accelerometer, each participant completed a physical activity

log during a second 1-week period. At the end of the year, each participant completed the

physical activity questionnaire.

The authors define Ti to be true usual weekly physical activity in MET-hours/week for

individual i, and define a three-equation measurement error model relating true usual activity
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to measured activity for the three instruments as

Qi = αQ + βQTi + εQi

Rij = Ti + εRij

Aij = αA + βATi + εAij , (1.3)

where Qi is measured activity in MET-hours/week from the questionnaire for individual i,

Rij is measured activity in MET-hours/week from the log for individual i during week j,

Aij is measured activity in MET-hours/week from the accelerometer for individual i during

week j, and εQi ∼ (0, σ2εQ), εRij ∼ (0, σ2εR), and εAij ∼ (0, σ2εA) for all i and j. The fixed

α and β parameters in the model capture the systematic component of measurement error,

while the ε terms in the model capture the random component of measurement error. The

authors assume that true usual activity is uncorrelated with the measurement error terms, that

Cov{εQi, εAij} = Cov{εRij , εAij} = 0 for all i and j, and that Cov{εQi, εRij} 6= 0. To identify

parameters from the model, one of the instruments must serve as a reference instrument that

is assumed to provide unbiased measurements of usual activity. The authors chose the physical

activity log as the reference instrument over the accelerometer because of concerns about the

ability of accelerometers to accurately measure certain types of activity (Matthews 2005).

The authors are primarily interested in estimation of a slope attenuation factor for the

physical activity questionnaire, which is defined as the slope in the linear calibration model

Ti = λ0 + λQTQi + ξi,

where ξi is a random error term with 0 mean. Under model (1.3), the attenuation factor is

λQT =
βQσ

2
T

β2Qσ
2
T + σ2εQ

.

A value of λQT close to one would indicate that there is little effect from measurement error

when studying the relationship between true activity and measured activity using the ques-

tionnaire. On the other hand, a value of λQT close to zero would suggest a considerable effect

from measurement error that may limit the ability to estimate usual physical activity from the

questionnaire measurements without a bias adjustment.
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The physical activity measurements from the Alberta study were log transformed for model

fitting. To account for gender effects, the log-transformed measurements were regressed on gen-

der and the residuals from the fitted regressions were used for model fitting. The measurement

error model (1.3) was fit using maximum likelihood under the assumption that the random

model terms were normally distributed. The estimated attenuation factor for the overall sam-

ple was 0.13 with a confidence interval of (0.05, 0.23). For men, the estimate was 0.23 with

a confidence interval of (0.09,0.41), and for women, the estimate was 0.07 with a confidence

interval of (-0.03,0.18). Given these results, the authors conclude that there is evidence of bias

in both the female and male measurements of physical activity using the questionnaire.

1.4.3.2 Spiegelman et al. Model

Spiegelman et al. (1997) also consider a measurement error model for validating a physical

activity questionnaire. The model is developed for physical activity data that come from

the Health Professionals Follow-up Study (Grobbee et al. 1990). Study participants were

measured for physical activity in MET-hours/week using physical activity logs and physical

activity questionnaires. Each participant completed a physical activity log during four 1-week

periods over the course of 1 year and completed a questionnaire at the end of the year, which

asked about frequency and duration of activities from the past year. A measurement of physical

fitness was also taken from each study participant based on change in pulse rate before and

after a step test. The measurement error model is

Xij = Ti + eXij

Zi = a+ bTi + eZi

Wi = c+ dTi + eWi, (1.4)

where Ti ∼ (µT , σ
2
T ) is true usual physical activity in MET-hours/week for individual i, Xij is

the jth unbiased measurement of physical activity in MET-hours/week for individual i from

a physical activity log, Zi is a measure of physical activity in MET-hours/week for individual

i from a physical activity questionnaire, Wi is a measure of physical fitness for individual

i (units not given), and eXij ∼ (0, σ2eX), eZi ∼ (0, σ2eZ), and eWi ∼ (0, σ2eW ) are random
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measurement error terms. The parameters a and b account for a systematic measurement

error in the questionnaire measurements and the parameters c and d account for a linear

relationship between physical fitness and usual physical activity. The authors assume zero

correlation between true usual activity (Ti) and each of the random measurement error terms

(eXij , eZi, and eWi) for all i and j. The authors also assume that Cov{eXij , eZi} 6= 0, but

that Cov{eXij , eWi} = Cov{eZi, eWi} = 0 for all i and j.

The model (1.4) was fit to the physical activity data using method of moments. The slope

attenuation factor of the physical activity questionnaire is

λZT =
bσ2T

b2σ2T + σ2eZ
,

and was estimated to be 0.30 with a 95% confidence interval of (0.21,0.39). This estimated

attenuation factor is similar to the estimated attenuation factor for men given in Ferrari et

al. (2007), which was 0.23 with a 95% confidence interval of (0.09, 0.41). Given these results,

there is evidence of bias in the physical activity questionnaire.

There are a number of similarities in the Spiegelman et al. and Ferrari et al. models. Both

models are developed to investigate the validity of a physical activity questionnaire. Both

models are three equation models and account for replicate measures of physical activity from

a reference instrument, which is assumed to provide unbiased measurements of usual physical

activity. Similar model assumptions are also considered in both papers to allow for model

identifiability. The Spiegelman et al. model includes an additional model equation for an

instrumental variable (physical fitness), while the Ferrari et al. model includes an additional

model equation for an alternative measure of physical activity from an accelerometer.

1.4.4 Dietary Intake Models

In many dietary intake studies, researchers are interested in assessment of usual (long-term

average) intake of nutrients and foods in a population (Nusser et al. 1996; Carriquiry 2003;

Dodd et al. 1996). Because usual intakes are unobservable, daily measurements of intake

are taken from individuals in the population. Like physical activity measurements, food and
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nutrient intake measurements are subject to measurement error and other nuisance effects.

Hence, measurement error models are developed to account and adjust for the errors.

Compared to the physical activity literature, the dietary intake literature offers more ex-

tensive research on measurement error model development. Models have been considered for

intake variables that are consumed on a nearly daily basis, such as nutrients and energy intake,

and for intake variables that are episodically consumed, such as foods. We limit our review

to models for dietary intake variables that are consumed on a nearly daily basis because these

models are more appropriate for the activity metrics we consider in our research. We review

methods used for estimating the distributions of usual intake of nutrients (Nusser et al. 1996;

Dodd et al. 2006; Carriquiry 2003) and methods used for estimating the error structure in ob-

served nutrient intake data obtained from multiple instruments (Kipnis et al. 2003; Spiegelman

et al. 2005; Rosner et al. 2008).

1.4.4.1 Estimating Usual Intake Distributions of Nutrients

One objective in dietary intake research is to estimate the distribution of usual intake of

nutrients for a population (Carriquiry 2003). There is considerable within-individual variation

in daily intake of nutrients, which when unaccounted for, induces excess variation and bias

in estimated distributions of usual daily intake for a population. To address this issue, the

National Research Council (1986) proposed a method for estimating usual daily intake distri-

butions, which involved shrinking the individual mean intakes towards the group mean intake.

This method is often referred to as the NRC method (Carriquiry 2003; Dodd et al. 2006). A

more extensive method for estimating usual intake distributions of nutrients, known as the ISU

method, was developed by Nusser et al. (1996) as an alternative to the NRC method. Dodd

et al. (2006) outlines an abbreviated version of the ISU method, known as the best power

(BP) method, which was used by Nusser et al. (1996) in a simulation study to evaluate the

use of a semi-parametric transformation to normality. In this section, we review each of these

methods.

First, we describe the NRC method. Let Yij be a measure of nutrient intake from a 24-
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hour recall for individual i on day j, where j = 1, . . . , d. If the data are not nearly normal,

a log or power transformation is applied to the data to better approximately normality. Let

yij = h(Yij) be the value of Yij in the transformed scale and let h(·) be the log or power

transformation that produces data that are more nearly normally distributed. To estimate

usual daily intake values, the individual means are shrunken towards the group mean. The

adjusted usual daily intake value for individual i is

t̂i = ȳ.. +
σ̂2t

σ̂2t + σ̂2e/d
(ȳi. − ȳ..),

where ȳ.. is the overall mean of the intake measurements, ȳi. is the mean of the intake measure-

ments of individual i, σ̂2t is the estimated inter-individual variance of the intake measurements,

and σ̂2e is the estimated within-individual variance of the intake measurements. An estimate of

usual daily intake in the original scale, T̂i, is obtained by applying the inverse of the transforma-

tion for normality, so that T̂i = h−1(t̂i), where h(·) is the transformation used to approximate

normality. The set of back-transformed values, {T̂i}, can be used to obtain an empirical es-

timate of the usual daily intake distribution. Quantiles, means, and standard deviations of

usual daily nutrient intake can be estimated from this empirical distribution.

A number of concerns with the NRC method have been discussed in the literature. The

simple power or log transformation used in the NRC method may not approximate normality

well for nutrient intake data, and in many cases more complex transformations are necessary

to achieve normality (Nusser et al. 1996; Carriquiry 2003). Also, using the simple inverse of

the power or log transformation to estimated usual daily nutrient intake values in the original

scale can introduce bias in the original-scale intake distribution. Because the mean of a log or

power transformed variable is not equal to the transformed mean of the original-scale variable,

the NRC method will generate biased estimates of usual intake parameters in the original scale

(Carriquiry 2003). The NRC method also assumes that the within-individual variances of daily

intake are homogeneous across individuals, which is not necessarily guaranteed.

The ISU method (Nusser et al. 1996) was developed to account for some of the concerns

raised about the NRC method. In the ISU method, the original nutrient intake data (Yij)

are transformed into the normal scale in a series of steps. First, the daily intake data are



22

transformed using a power transformation. The “best” power for this transformation is selected

by minimizing the error sum of squares

n∑
i=1

d∑
j=1

(Uij − α0 − α1Y
γ
ij )

2

over a grid of γ values, where Uij is the normal score for the ijth observation in the dataset,

and α0 and α1 are estimated for each value of γ. Let γ∗ be the value that minimizes the error

sum of squares based on the grid search and let y∗ij = Y γ∗

ij . If γ∗ is zero, then y∗ij = log(Yij).

Next, the transformed data are adjusted for nuisance effects, such as day-of-week, interview

mode, and interview sequence effects. A model is fit to the y∗ij data containing variables

for these nuisance effects. The adjusted value for daily intake of individual i on day j is

y∗∗ij = (1/ŷ∗ij)ȳ
∗
.1y
∗
ij , where ŷ∗ij is the predicted value of y∗ij from the fitted model with nuisance

effects and ȳ∗.1 is the mean of the y∗ij values for the first interview day. The data are adjusted

to the mean of the first interview day because the data are believed to be more accurate on

the first interview day (Nusser et al. 1996). Next, a grafted cubic polynomial is fit to the

(Uij , y
∗∗
ij ) pairs. The number of join points used to construct the polynomial is chosen to be

the minimum number of join points required to make the value of the Anderson-Darling test

statistic less than or equal to a cutoff value of 0.58 (p-value of 0.15) when applied to the data

from the polynomial fit (Nusser et al. 1996). The grafted polynomial is used instead of a log

or power transformation because the polynomial adjustment gives a better approximation to

normality, especially in the tails of the distribution. Let yij be the estimated value of y∗∗ij from

the polynomial fit.

After the transformation to normality, the next step in the ISU method is to fit the mea-

surement error model

yij = ti + uij ,

where ti ∼ N(µt, σ
2
t ), uij ∼ N(0, σ2ui), and σ2ui ∼ (µA, σ

2
A). The uij are assumed to be

independent given i, and ti and ulj are assumed to be independent for all i, l, and j. The

distribution of σ2ui accounts for heterogeneity in the within-individual error variances. The

parameters in the model are estimated using method of moments. Let µ̂t and σ̂2t be estimates
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of µt and σ2t , respectively, from the model fit. Then, the estimated distribution of usual daily

nutrient intake in the normal scale is N(µ̂t, σ̂
2
t ).

The final step of the ISU method is to transform usual intake values in the normal scale

back to the original scale. Let g(·) denote the transformation taking the adjusted observed

intakes to normality, let T̈i denote the true usual daily intake for individual i in the original

scale, and let ẗi denote the true usual daily intake for individual i in the normal scale. Then

T̈i = E{y|t = ẗi} = E{g−1(t+ u)|t = ẗi} = h(ẗi),

where h(·) is the implicit transformation taking the normal-scale usual daily intake values into

the original scale that must be estimated by approximating the conditional expectation of y

given t for a set of values ẗi and then fitting a grafted polynomial to the (T̈i, ẗi) pairs (Nusser

et al. 1996). The set of ẗi values used for this procedure is a set of 400 values, where the first

five moments of the set of values match the first five moments of a N(0, σ̂2t ) distribution. At

each value of ẗi, the usual intake value in the original scale is approximated by

T̈i =

4∑
l=−4

wlg
−1(ẗi + cl),

where the nine points cl and the nine weights wl, with
∑
wl = 1, are constructed such that

the first five moments of the discrete nine-point distribution match the first five estimated

moments of the conditional distribution of ẗ+u conditional on ẗ (Nusser et al. 1996). The 400

T̈i values provide an estimated usual daily intake distribution and a grafted cubic polynomial

fit to the pairs (T̈i, ẗi), denoted by ĥ, is an estimator of the transformation taking the normal-

scale usual daily intake values (ẗi) into the original scale. The estimated function ĥ can be used

to compute usual intake values in the original scale using normal-scale usual intake values.

Finally, we give a brief review of the BP method as given in Dodd et al. (2006). This

method is similar to the NRC method, but uses a bias correction for transforming estimated

usual daily intake values from the normal scale back into the original scale. In the method, the

nutrient intake values in the original scale, Yij , are transformed using a power transformation,

where the transformed values approximate normality. Let yij = g(Yij) be the transformed

value of Yij , where g(·) is the transformation function. The measurement error model of yij is
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given by

yij = ti + wij ,

where ti ∼ N(µt, σ
2
t ), wij ∼ N(0, σ2w), and Cov(ti, wij) = 0 for all i and j. A set of t∗i values

are generated from the N(µ̂t, σ̂
2
t ) distribution, where µ̂t and σ̂2t are estimates of µt and σ2t from

the fitted model. A value for t∗i in the original scale is

T ∗i = h(t∗i ) + (1/2)h′′(t∗i )σ̂
2
w,

where h(·) = g−1(·), h′′(·) is the second derivative of h(·), and σ̂2w is the estimate of σ2w from

the measurement error model. This derivation is based on the second-order Taylor expansion

Ti = E{h(t+ w)|t = ti}

≈ h(E{t+ w|t = ti}) + h′(E{t+ w|t = ti})E{(t+ w)− E{t+ w|t = ti}|t = ti}

+ (1/2)h′′(E{t+ w|t = ti})E{(t+ w)− E{t+ w|t = ti}|t = ti}2

= h(E{t+ w|t = ti}) + (1/2)h′′(E{t+ w|t = ti})V ar{t+ w|t = ti}

= h(ti) + (1/2)h′′(ti)σ
2
w.

The BP method offers a simple alternative to the ISU method because a single power transfor-

mation is used to approximate normality and to back transform values into the original scale

instead of a two-stage transformation involving a cubic polynomial. But, the BP method may

not be appropriate when nutrient intake data cannot be made approximately normal using a

simple power or log transformation (Carriquiry 2003). Also, the BP method does not account

for heterogeneous error variances across individuals, which may exist in nutrient intake data.

1.4.4.2 Measurement Error Structure in Nutrient Intake Models

A second objective in dietary intake research is to evaluate the validity of self-report in-

struments for measuring usual daily intake of nutrients. In many dietary intake studies, food

frequency questionnaires are used to measure nutrient intake from a large sample of individ-

uals and 24-hour dietary recalls are used as an unbiased reference instruments to calibrate
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or adjust for biases in the the food frequency questionnaires. This approach has been shown

to be problematic, since 24-hour dietary recalls, like food frequency questionnaires, may give

biased estimates of nutrient intake. Researchers have developed measurement error models to

investigate the error structure in nutrient intake data as a means for evaluating the validity

of both food frequency questionnaires and 24-hour dietary recalls. We review one such model

presented in Kipnis et al. (2003).

The Kipnis et al. (2003) model was developed for data from the Observing Protein and

Energy Nutrition (OPEN) study, where approximately 500 adults aged 40-69 years completed

multiple food frequency questionnaires and 24-hour dietary recalls during September 1999 to

March 2000. Every participant was also measured for energy intake using doubly labeled

water (DLW) and protein intake using urinary nitrogen measurements. A subsample of the

participants provided multiple DLW and urinary nitrogen measurements. In our review, we

consider the Kipnis et al. model for measurements of energy intake.

Let Ti denote true, usual daily energy intake for individual i and let Qij , Fij , and Mij be

estimated energy intake for individual i on day j using a food frequency questionnaire (FFQ),

a 24-hour dietary recall, and a reference biomarker (doubly labeled water), respectively. The

model equation for the FFQ-derived intake is

Qij = βQ0 + βQ1Ti + µQj + ri + εij ,

where µQj is a time-specific effect for the jth measurement, βQ0 + βQ1Ti + ri represents the

within-person bias in the measurement with a systematic component (βQ0+βQ1Ti) and random

component (ri), and εij represents within-person variation. The random terms in the model

are Ti ∼ (µT , σ
2
T ), ri ∼ (0, σ2r ), and εij ∼ (0, σ2ε ) and are assumed to be uncorrelated for all i

and j. The remaining terms in the model, µQj , βQ0, and βQ1, are fixed. The model equation

for energy intake measured from the the dietary recall is

Fij = βF0 + βF1Ti + µFj + si + uij

and is similar to the model equation for the FFQ in that it contains a time-specific group

effect term, µFj , an individual-level bias model with systematic and random components,
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βF0 + βF1Ti + si, and a within-person error term, uij . Ti ∼ (µT , σ
2
T ), si ∼ (0, σ2s), and

uij ∼ (0, σ2u) are assumed to be uncorrelated for all i and j and the remaining terms in the

equation, µFj , βF0, and βF1, are fixed. The third and final equation for the biomarker is

Mij = Ti + µMj + vij ,

where µMj is a time-specific group effect term, vij ∼ (0, σ2v) is a within-person error term, and

Ti and vij are assumed to be uncorrelated. The authors assume that Ti is uncorrelated with

the individual-level bias terms, ri and si, for all i. The terms ri and si are assumed to be

correlated with each other, and are assumed to be uncorrelated with the model error terms

εij , uij , and vij for all i and j. The εij , uij , and vij terms are assumed to be uncorrelated with

each other expect when measurements are taken contemporaneously, in which case the pairs

(εij , uij), (εij , vij), and (uij , vij) are assumed to be correlated.

The Kipnis et al. model was fit to the OPEN energy intake data using maximum likelihood

under the assumption of normality. Before fitting, the energy intake measurements were log

transformed to better approximate normality. Extreme outlying values were excluded from

the analysis. To evaluate the validity of the food frequency questionnaire against the DLW

measurements, the authors estimated the slope attenuation factor

λQ =
βQ1σ

2
T

β2Q1σ
2
T + σ2r + σ2ε

for males and females separately. The estimate was 0.080 for males with a standard error of

0.025 and was 0.039 for females with a standard error of 0.028. To evaluate the validity of

the food frequency questionnaire against the 24-hour dietary recall, the authors assume the

24-hour dietary recall is the unbiased reference instrument and fit the reduced model

Qij = βQ0 + βQ1Ti + µQj + ri + εij ,

Fij = Ti + µFj + uij ,

to the OPEN data and estimate the same attenuation factor λQ. The estimated attenuation

factors based on the reduced model are higher for males (0.230 with a standard error of 0.037)

and females (0.128 with a standard error of 0.044), relative to the estimates based on the
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full model with the biomarker. The authors conclude that the attenuation factor λQ may

be overestimated using only the 24-hour recall as a reference instrument and not the DLW

biomarker, because of the potential bias in the 24-hour recall.

The structure of the Ferrari et al. model (1.3) is similar to the structure of the Kipnis et

al. model. Both models include model equations for potentially biased measurements. The

Kipnis et al. model includes equations for measurements from a food frequency questionnaire

and 24-hour dietary recall and the Ferrari et al. model includes equations for measurements

from a physical activity questionnaire and accelerometer. Both models also include a model

equation for an unbiased reference instrument, which is DLW in the Kipnis et al. model and is a

physical activity log in the Ferrari et al. model. Using DLW as the reference instrument seems

more appropriate, since the physical activity log may give biased measurements of physical

activity due to the nature of self-reporting.

The Ferrari et al. model assumes that the measurement errors from the questionnaire

and physical activity log have a nonzero correlation, but that the measurement errors from

the accelerometer are uncorrelated with the measurement errors from the self-reports. The

Kipnis et al. model assumes that the individual-level bias terms from the FFQ and 24-hour

recall are correlated and assumes that the measurement error terms are only correlated when

the measurements are taken contemporaneously. Assumptions of this nature are necessary for

model identifiability, which allows for estimation of model parameters given sample data. Other

measurement error models have been given in the literature that go beyond the three-equation

model structure presented in Kipnis et al. (2003) and Ferrari et al. (2007) in order to identify

a larger set of model parameters. For example, Spiegelman et al. (2005) consider models where

a fourth model equation is included for measurements from an instrumental variable to allow

for identifiability of additional model parameters. Rosner et al. (2008) consider models where

covariate information, such as BMI and smoking status, is included in the model equations to

estimate relationships between the covariates and nutrient intake.
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1.5 Summary

In this chapter, we have reviewed some of the methods used to measure physical activity and

presented some of the models used to estimate usual (long-term average) physical activity and

dietary intake variables. The general consensus in the literature is that self-report instruments

are the most practical type of instrument for measuring physical activity from individuals

in the population because self-report instruments are inexpensive to implement in large-scale

surveys and are often of little burden to survey participants. But, self-report instruments are

also subject to significant measurement errors and biases because individuals tend to misreport

on their activity due to a variety of factors. As a result, assessment of physical activity using

unadjusted self-report data may lead to significant biases, particularly in usual physical activity

parameters.

In more recent research, monitoring devices have been considered as an alternative or

companion to self-report instruments because monitors measure physical activity objectively

(e.g., without self-reporting biases) and most contemporary monitors are small enough to

be worn without much of a burden to the survey participants. When multiple concurrent

measurements of physical activity are taken from individuals in the sample using a monitor

instrument and self-report instrument, measurement error models can be used to estimate

the various sources of variation and bias in the data and to estimate usual physical activity

parameters after adjusting for excess variation and bias due to measurement error and nuisance

effects. Measurement error model research has been well established for assessing dietary intake

variables (Section 1.4.4), but to date, has only been considered in two papers for assessing

physical activity variables (Section 1.4.3). The Ferrari et al. and Spiegelman et al. models

presented in Section 1.4.3 assume that physical activity logs provide unbiased measurements

of physical activity, which may be violated due to the nature of self-reporting on activity.

The models are also considered for convenience samples, and not probability samples from the

population.

The goal of our research is to build upon the measurement methods and models in the liter-

ature in order to develop models for physical activity data. We consider methods that account
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for the bias associated with self-report instruments and allow researchers to make inferences

about physical activity in subpopulations or target groups of the population. In Chapter 2

we develop a model for physical activity data from the National Health and Nutrition Ex-

amination Survey (NHANES). The NHANES data are collected from a representative sample

of the United States using a questionnaire, which asks survey participants to report on their

moderate to vigorous physical activity (MVPA) from the previous 30 days. The questionnaire

data are subject to significant reporting errors because survey participants tend to have a

difficult time remembering and accurately reporting on their physical activity over the course

of a 30-day period. A convenience subsample of the survey participants wore accelerometers

for a week after completing the questionnaire to provide a monitor-based measure of daily

MVPA to go with their self-report measure of daily MVPA. Using these data, we develop a

linear regression model that models accelerometer-based daily MVPA as a function of self-

reported activity variables and other demographic variables. The fitted model can be used to

estimate mean daily MVPA levels of demographic groups in the population. Using the model

to estimate mean daily MVPA in groups of the population is a reasonable alternative to using

the unadjusted self-report measurements of MVPA because of the significant reporting errors

observed in the unadjusted self-report data.

In Chapter 3 we develop a method for estimating usual daily energy expenditure parameters

from physical activity data collected using a self-report instrument and an unbiased objective

monitoring device for at least a subsample of study respondents. Our method extends the

methods considered in Sections 1.4.3 and 1.4.4, which utilize measurement error models for

estimating usual physical activity and dietary intake variables. In our approach, a measurement

error model is fit to daily measurements of total energy expenditure. Parameters of usual daily

energy expenditure are estimated for subpopulations that may be determined by gender, age,

or race/ethnicity. Researchers can then use the parameter estimates to compare EE behaviors

across these subpopulations. We illustrate our method with preliminary data from a sample of

females in the Physical Activity Measurement Survey (PAMS). The PAMS data are collected

from a 24-hour physical activity recall and the SenseWear Pro armband monitor. Parameters
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of usual daily EE are estimated for 4 age groups from the female sample.
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CHAPTER 2 A REGRESSION MODEL FOR MODERATE TO

VIGOROUS PHYSICAL ACTIVITY (MVPA)

2.1 Introduction

Accurate assessment of physical activity is a well-established public health priority (U.S.

Department of Health and Human Services 1996). Estimates of physical activity for individ-

uals in a group or population are often calculated using self-report instruments (Matthews

2002; Ainsworth 2009), which are relatively inexpensive to administer to large samples of the

population. However, estimates from self-report instruments are also prone to significant mea-

surement errors and biases due to the subjective nature of reporting on physical activity and

instrument limitations (Matthews 2002; Sallis and Saelens 2000; Adams et al. 2005). Mon-

itoring devices such as accelerometers (Welk 2002; Ward et al. 2005) offer more objective

measurements of physical activity than self-report instruments, but are more expensive to im-

plement in large-scale surveys and are often more of a burden to survey participants (Ward et

al. 2005; Matthews 2005). In most large-scale surveys that include physical activity measure-

ment (e.g., BRFSS, NHIS) the full sample is measured for physical activity using a self-report

instrument. In some surveys (e.g., NHANES) a subsample is also measured for physical activ-

ity using monitor instruments. To obtain more objective estimates of physical activity for the

full sample, the self-report measurements from the full sample can be adjusted or calibrated

using statistical models that are estimated from the subsample containing both self-report and

monitor-based measurements.

In the 2003-2004 and 2005-2006 cycles of NHANES, individuals from a subsample are

measured for physical activity via accelerometers and physical activity questionnaires. We

use the subsample of female adults (age 20 and older) from the 2003-2004 cycle of NHANES
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to develop a linear regression model relating accelerometer physical activity to self-reported

physical activity. We then fit the same model to the 2005-2006 female sample of adults to

see if the model based on analyses of 2003-2004 data is generalizable to the 2005-2006 data,

and develop a final model for female physical activity using both samples. In Section 2.2 we

describe the NHANES physical activity data. In Section 2.3 we develop the regression model

for female physical activity. In Section 2.4 we present examples for estimating and predicting

physical activity. We conclude with a discussion in Section 2.5.

2.2 NHANES Physical Activity Data

NHANES is an ongoing survey of the United States civilian non-institutionalized popula-

tion sponsored by the National Center for Health Statistics (NCHS), a branch of the Centers

for Disease Control and Prevention (CDC). Survey participants provide health and nutrition

data during interviews and medical examinations. In the 2003-2004 and 2005-2006 cycles of

NHANES, physical activity data were collected for a subsample of survey participants using a

physical activity questionnaire and Actigraph accelerometers.

The NHANES sample design is a stratified cluster design, where clusters or primary sam-

pling units (PSUs) are selected from geographic strata that are subdivisions of the United

States and individuals are selected from within the PSUs. To protect the confidentiality of

survey participants, pseudo-strata and pseudo-PSUs are created for the NHANES samples

and are used in place of the actual strata and PSUs for variance estimation. In the remainder

of the presentation we will refer to the pseudo-PSUs and pseudo-strata as PSUs and strata,

respectively.

The physical activity questionnaire asks participants to recall their physical activity from

the past 30 days. Participants report on frequency and duration of activities related to trans-

portation to and from work or school, or to do errands, activities related to household main-

tenance (e.g., raking leaves, mowing the lawn), and activities related to leisure (e.g., exercise,

sports, and hobbies) (U.S. Department of Health and Human Services 2009). For reports

on transportation and household activities, participants are asked to specify frequency and
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duration of activities they do for at least 10 minutes that are at a moderate intensity level

or higher. For reports on leisure activities, participants are asked to specify separately type,

frequency, and duration of activities they do for at least 10 minutes that are at moderate and

vigorous intensity levels. In the questionnaire documentation, moderate intensity activities are

defined as activities causing “light sweating or a slight to moderate increase in heart rate or

breathing” and vigorous intensity activities are defined as activities causing “heavy sweating

or large increases in breathing or heart rate” (U.S. Department of Health and Human Services

2009). For each participant, an estimate of average daily time spent in moderate to vigorous

physical activity (MVPA) is computed by adding up the minutes of reported moderate and

vigorous transportation, household, and leisure activity from the 30 days of recall and dividing

the total number of minutes by 30.

After completing the physical activity questionnaire, participants are asked to wear ac-

celerometers for a week to further monitor their physical activity. The accelerometers are

worn around the waist during all waking hours of the day and are taken off during water activ-

ities such as swimming and showering. The accelerometers measure duration and intensity of

movement in activity counts and the activity counts are translated into periods of little or no

intensity activity, moderate intensity activity, and vigorous intensity activity. The threshold

for moderate intensity activity is 2020 counts and the threshold for vigorous intensity activity

is 5999 counts (Troiano et al. 2008). Only periods of moderate and vigorous intensity activity

lasting at least 10 minutes are considered. For each participant, an estimate of average daily

MVPA is computed by adding up the minutes of measured moderate and vigorous activity and

dividing by the total number of days worn.

For our analysis, we consider female participants age 20 years and older who completed

the questionnaire and wore an accelerometer for at least 10 or more hours on 4 or more days.

In the 2003-2004 NHANES there are 1569 such females (after removing an outlier), which

we will denote as the 2003-2004 NHANES sample. In the 2005-2006 NHANES there are

1522 such females, which we will denote as the 2005-2006 NHANES sample. The outlier in

the 2003-2004 NHANES sample was identified as having unrealistic physical activity reports.
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The demographic decompositions of each NHANES sample are provided in Table 2.1. Both

samples are distributed fairly uniformly across age groups. Over 90% of each sample contains

participants who classify themselves as either non-Hispanic black, Mexican American, or non-

Hispanic white.

Table 2.1 Demographic decomposition of the NHANES samples

2003-2004 Sample 2005-2006 Sample

Age Group Count (%) Count (%)

20-29 219 (14) 268 (18)

30-39 240 (15) 255 (17)

40-49 257 (16) 270 (18)

50-59 219 (14) 222 (14)

60-69 285 (18) 247 (16)

70-79 201 (13) 146 (10)

80+ 148 (10) 114 (7)

Total 1569 (100) 1522 (100)

Race/Ethnicity Count (%) Count (%)

Black 260 (17) 331 (22)

Mexican 319 (20) 310 (20)

White 879 (56) 766 (50)

Other Hispanic 48 (3) 46 (3)

Other 63 (4) 69 (5)

Total 1569 (100) 1522 (100)

A survey weight is computed for each individual in the NHANES samples. The initial

survey weight is the inverse of the individual’s probability of being included in the sample.

The final weight is the individual’s initial weight adjusted for nonresponse and post-stratified

to match 2000 U.S. Census population control totals for gender, age group, and race/ethnicity

group. Percentiles for the distribution of the final survey weights are given in Table 2.2 for

each of the NHANES samples.

Table 2.2 Percentiles for the distribution of final survey weights for the

NHANES samples

Percentile 0 10 25 50 75 90 100

2003-2004 Survey Weight 1,569 5,214 16,888 28,254 50,485 70,621 105,962

2005-2006 Survey Weight 1,261 7,524 15,584 28,108 55,388 75,147 117,833
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Survey weighted means of average daily accelerometer MVPA are given in Table 2.3 for

the NHANES samples. Means are computed separately for age groups and race/ethnicity

groups. Stratified cluster standard errors are computed for the means to take into account the

NHANES complex sample design. See the SAS documentation on PROC SURVEYMEANS

(SAS Institute 2009). In both samples, there is a noticeable drop in mean estimated average

daily MVPA for the oldest age group. In the 2005-2006 sample, there is a noticeable difference

in mean estimated average daily MVPA for the “White and Other” group compared to the

Black and Mexican groups.

Table 2.3 Weighted means (standard errors) for average daily MVPA

(min/day) measured by accelerometer for the NHANES samples

Age Group 2003-2004 Sample Mean (SE) 2005-2006 Sample Mean (SE)

20-40 6.93 (0.80) 5.81 (0.75)

41-60 5.81 (0.56) 5.86 (0.59)

61-75 5.04 (0.66) 4.74 (0.78)

76+ 1.15 (0.44) 1.08 (0.40)

Race/Ethnicity 2003-2004 Sample Mean (SE) 2005-2006 Sample Mean (SE)

Black 5.07 (1.08) 3.32 (0.45)

Mexican 5.70 (0.52) 3.82 (0.48)

White and Other 5.90 (0.51) 5.71 (0.44)

A plot comparing average daily MVPA estimated from the accelerometers and average

daily MVPA estimated from the questionnaires is provided in Figure 2.1 for the 2003-2004

NHANES sample. The plot omits 3 individuals with extreme questionnaire-based estimates

above 700 minutes/day. There is a modest positive linear association between the accelerometer

and questionnaire estimates based on the Pearson correlation coefficient (r = 0.23). This

linear association is not noticeable in the plot. A majority of the points in the plot lie above

the dashed identity line (about 76% of the points), suggesting that most individuals report

more average daily MVPA than the accelerometers record. The plot comparing accelerometer

and questionnaire average daily MVPA for the 2005-2006 NHANES sample shows a similar

relationship. The Pearson correlation coefficient is also similar (r = 0.27).

There is a significant number of individuals in the NHANES samples with zero estimated
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Figure 2.1 Plot of average daily MVPA for the 2003-2004 NHANES sample

(dashed line is the identity line)

average daily MVPA (Table 2.4). Over 60% of the accelerometer measurements of average daily

MVPA are zero in both NHANES samples. Around 20% of the questionnaire measurements are

also zero in both samples. About half of the participants in both samples have contradicting

estimates in that the estimate is zero based on one instrument and positive based on the other.

2.3 Regression Model for Female Physical Activity

In this section we develop a linear regression model for female physical activity. In our

analyses, we use ordinary least squares (OLS) estimators to develop a preliminary model

(Section 2.3.1) and use estimated generalized least squares (EGLS) estimators (Section 2.3.2)

to estimate model parameters and compute standard errors for the final models. In our final

analyses, we use EGLS procedures rather than design-based procedures, because EGLS may

be more familiar to physical activity researchers than design-based estimation and because the
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Table 2.4 Count (percent) of individuals with zero (0) and positive (> 0)

estimated average daily MVPA for the NHANES samples

2003-2004 NHANES sample

0 Quest. MVPA > 0 Quest. MVPA Total

0 Accel. MVPA 270 (17) 702 (45) 972 (62)

> 0 Accel. MVPA 55 (3) 542 (35) 597 (38)

Total 325 (20) 1244 (80) 1569 (100)

2005-2006 NHANES sample

0 Quest. MVPA > 0 Quest. MVPA Total

0 Accel. MVPA 242 (16) 728 (48) 970 (64)

> 0 Accel. MVPA 41 (3) 511 (33) 552 (36)

Total 283 (19) 1239 (81) 1522 (100)

results for EGLS are similar to those for design-based estimation. We justify the use of EGLS

procedures in Section 2.3.5.

2.3.1 Model Development

The physical activity and demographic variables we use for model development are given

in Table 2.5. The model response variable is average daily MVPA measured by accelerometer.

This variable is given in the original scale so that the model can be used for estimation of

average daily accelerometer MVPA. The self-report physical activity variables trans, mod,

and vig were truncated at their respective 99th percentiles in the original scales to account

for cases of extreme over-reporting on physical activity. We did not include a variable for

reported household activity because the estimated regression coefficient on the variable was

non-significant in all of the models considered in our preliminary analyses. The self-report

variables are in the cube-root scale. The cube-root transformation provided a better model fit

than the square root and fourth root transformations. Using the age variable, we define the

variables

age1 =



30 if age < 30

60− age if 30 ≤ age ≤ 60

0 if age > 60

(2.1)
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and

age2 =



15 if age < 60

75− age if 60 ≤ age ≤ 75

0 if age > 75.

(2.2)

These variables are defined so that the estimated coefficients are positive in the estimated

model. The variable

mexblack = mex+ black (2.3)

is an indicator variable for being either non-Hispanic black or Mexican American. Whenever it

is reasonable based on significance tests, we use the mexblack indicator variable in our analyses

instead of separate indicator variables for mex and black, because preliminary tests suggest

that the full models with the mex and black indicator variables are not significantly different

than the reduced models with the mexblack indicator variable.

Table 2.5 Variables for model

Variable Description

y average daily accelerometer MVPA

trans∗ self-reported average daily transportation activity

mod∗ self-reported average daily moderate leisure activity

vig∗ self-reported average daily vigorous leisure activity

age age at time of screening for NHANES

age1 age group variable defined by (2.1)

age2 age group variable defined by (2.2)

mex 1 if Mexican American, 0 otherwise

black 1 if non-Hispanic black, 0 otherwise

mexblack indicator variable defined by (2.3)

*Truncated at 99th percentiles and transformed to the cube-root scale

In developing a regression model, we first fit linear regression models for each of three

race/ethnicity groups for females: non-Hispanic black, Mexican American, and other, where

other includes non-Hispanic whites. Then we fit a final model for the full female sample using

the information from the three initial model fits. The model for the three race/ethnicity groups
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is

yhij = β0 + β1transhij + β2modhij + β3vighij + β4age1hij + β5age2hij + ehij

= x′hijβ + ehij , (2.4)

where the model variables are defined in Table 2.5 and the hij indexing on the variables refers to

individual j, j = 1, . . . ,mhi, in PSU i, i = 1, . . . , nh, in stratum h, h = 1, . . . ,H. See Appendix

B. For preliminary analyses, model (2.4) is fit to each of the three female race/ethnicity groups

in the 2003-2004 NHANES sample using ordinary least squares (OLS). The OLS estimator is

β̂OLS =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijx
′
hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijyhij . (2.5)

Standard errors of the estimated regression coefficients are computed using the Taylor lin-

earization variance of β̂OLS given in Appendix B. The estimates and standard errors from the

model fits are given in Table 2.6. The intercept coefficients in each of the model fits are non-

significant and removed from consideration for the full female model. Similarly, the estimated

coefficients on age1 are all non-significant and removed from consideration for the full female

model. The estimated coefficient on mod is larger for the “other” sample compared to the

black and Mexican samples. To account for the difference, we define the model variable

mexblackmod = (mexblack)(mod)

for the full female model. The estimated coefficient on vig is smaller for the Mexican sample

compared to the black and other samples. To account for the difference, we define the model

variable

mexvig = (mex)(vig)

for the full female model. To account for a potential interaction between race/ethnicity and

age, we also define the model variable

mexblackage = (mexblack)(age2)
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for the full female model. The version of model (2.4) for the combined sample of all females is

yhij = β1transhij + β2modhij + β3vighij + β4age2hij + β5mexblackmodhij

+β6mexvighij + β7mexblackagehij + ehij

= x′hijβ + ehij . (2.6)

Estimates for the regression coefficients from this model are presented in Section 2.3.6.

Table 2.6 Estimated regression coefficients for model (2.4) fit to three fe-

male groups in the 2003-2004 NHANES sample using OLS

Black Mexican Other

Variable Est (SE) Est (SE) Est (SE)

Intercept -1.788 (0.950) 0.667 (0.912) -0.483 (0.433)

trans 1.231 (0.606) 2.436 (0.750) 2.250 (0.496)

mod 0.549 (0.431) 0.193 (0.389) 1.120 (0.245)

vig 3.328 (1.236) 0.565 (0.663) 2.051 (0.410)

age1 0.016 (0.092) 0.054 (0.055) -0.057 (0.037)

age2 0.215 (0.129) 0.138 (0.112) 0.193 (0.058)

2.3.2 EGLS Estimator

Because of evidence of heterogeneity in the estimated error variances in preliminary anal-

yses, we consider an estimated generalized least squares (EGLS) estimator for estimating re-

gression coefficients from the full female model. The EGLS estimator of β for (2.6) is

β̂EGLS =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhij v̂
−1
hijx

′
hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhij v̂
−1
hijyhij , (2.7)

where v̂hij is an estimator of vhij and vhij is the variance of ehij in (2.6). Given regularity

conditions, β̂EGLS is consistent for β. See Theorem 1 in Appendix A. For calculation, we often

use an alternative form of the EGLS estimator in (2.7). The estimator

β̂∗EGLS =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

x∗hijx
′
∗hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

x∗hijy∗hij , (2.8)
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where y∗hij = v̂
−1/2
hij yhij and x∗hij = v̂

−1/2
hij xhij , is equivalent to the estimator in (2.7) and has

the appealing form of an OLS estimator. An estimator of the variance of β̂∗EGLS is

V̂ (β̂∗EGLS) =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

x∗hijx
′
∗hij

−1 (n− p)−1
H∑
h=1

nh∑
i=1

mhi∑
j=1

ê2∗hij , (2.9)

where ê∗hij = y∗hij − x∗hijβ̂∗EGLS .

We obtain estimates of v̂hij by fitting a variance model. Let

ŷhij = x′hijβ̂OLS (2.10)

be the estimate of yhij and let

êhij = yhij − ŷhij (2.11)

be the residual value of ehij for individual j in PSU hi when model (2.6) is fit to the 2003-2004

NHANES sample, where β̂OLS is given in (2.5). The estimates of elements in β̂OLS are given

in Table 2.7 with standard errors computed using the Taylor linearization variance of β̂OLS

given in Appendix B. The nonlinear model

ê2hij = α0 + α1(ŷhij)
α2 (2.12)

is fit using OLS, where ŷhij is defined in (2.10) and êhij is defined in (2.11). The estimated

coefficients of α0, α1, and α2 are 14.34, 6.67, and 1.41, respectively. The nonlinear model (2.12)

is refit using weighted least squares, where the weights are the inverses of the estimated values

from the initial nonlinear model fit. The second fitting of model (2.12) with variance weights

accounts for heterogeneity in the errors from the first fitting. The estimated coefficients of α0,

α1, and α2 are 5.18 (10.59), 12.15 (6.76), and 1.18 (0.23), respectively, for the second fitting,

where the standard errors of the estimates are given in parentheses. An estimate of vhij is then

v̂hij = 5.18 + 12.15(ŷhij)
1.18, (2.13)

where ŷhij is defined in (2.10). Percentiles of the distribution of estimated variances are given

in Table 2.8. As a check to see if there is additional variability in the estimated variances
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which can be accounted for by the model variables in (2.6), we fit the model

(ê2hij − v̂hij)
v̂hij

= x′hijη,

to the 2003-2004 NHANES sample using OLS, where xhij is given in (2.6). None of the

estimated regression coefficients were significant in the model fit, giving evidence that the

model variables do not account for any additional variability in the estimated variances. The

EGLS estimator (2.8) is fit to the 2003-2004 NHANES sample using the estimated variances

given by (2.13). Standard errors of the estimated regression coefficients are computed using

the EGLS variance in (2.9). The estimated regression coefficients and standard errors are given

in the first column of Table 2.11.

Table 2.7 Estimated regression coefficients for model (2.6) fit to the

2003-2004 NHANES sample using OLS

Variable 2003-2004 Est (SE)

trans 2.017 (0.228)

mod 1.081 (0.199)

vig 2.202 (0.239)

age2 0.100 (0.035)

mexblackmod -0.747 (0.338)

mexvig -1.316 (0.652)

mexblackage 0.092 (0.052)

Table 2.8 Percentiles for the distribution of estimated error variances for

the 2003-2004 NHANES sample

Percentile 0 10 25 50 75 90 100

Estimated Error Variance 5 12 28 59 130 206 516

2.3.3 Test for Full vs. Reduced Models

We conduct a test to see if model (2.6) for the full female sample is significantly different

than model (2.4) for the three female race/ethnicity groups. In the test, we consider model

(2.6) as a reduced model of model (2.4) when model (2.4) is fit to three separate race/ethnicity
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samples and use F-test procedures for comparing full and reduced models. The test statistic is

F =
(SSEfem − SSEsep)/(dffem − dfsep)

(SSEsep/dfsep)
,

where SSEfem is the error sum of squares (SSE) when model (2.6) is fit to the full 2003-

2004 sample, SSEsep is the sum of the SSEs when model (2.4) is fit to each of the three

race/ethnicity groups, dffem is the degrees of freedom of SSEfem, and dfsep is the degrees

of freedom of SSEsep. The sum of squares are computed from fitting model (2.6) to the full

sample and model (2.4) to each of the three race/ethnicity groups using the EGLS estimator

(2.8). The F statistic is 1.15 with (11, 1551) degrees of freedom and has a corresponding

p-value of 0.32. Hence, there is little evidence to suggest that model (2.6) for the full female

sample is different than model (2.4) for each of the three female race/ethnicity groups.

2.3.4 Test for Survey Weights

The EGLS estimator (2.8) used to estimate the regression coefficients may be biased if

the error terms in model (2.6) are correlated with the survey weights. To test to see if the

survey weights are significant in the regression estimation, we consider the test procedure from

Appendix B for the EGLS estimator and variance. Let

y∗hij = x′∗hijβ + w∗hijx
′
∗hijγ + a∗hij

= (x′∗hij , w
∗
hijx

′
∗hij)(β

′,γ ′)′ + a∗hij

= z′∗hijλ+ a∗hij , (2.14)

where x∗hij and y∗hij are defined in (2.8),

w∗hij = (whij − w̄)/w̄,

and a∗hij is a model error term. A test for the hypothesis that γ = 0 is

F = p−1λ̂′2V̂ (λ̂)−122 λ̂2, (2.15)

where λ̂2 is the lower p elements of

λ̂ =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

z∗hijz
′
∗hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

z∗hijy∗hij ,



44

and V̂ (λ̂)22 is the lower right p x p submatrix of V̂ (λ̂), where V̂ (λ̂) is given by (2.9) with z∗hij

replacing x∗hij and â∗hij = y∗hij−z′∗hijλ̂ replacing ê∗hij . Under the null hypothesis that γ = 0

and given regularity conditions, F in (2.15) is approximately an F with p and n− 2p degrees

of freedom, where p is the dimension of γ and n is the number of elements in the sample.

When the extended model (2.14) is fit to the 2003-2004 NHANES sample, the F statistic

from (2.15) is 1.72 with (7, 1555) degrees of freedom and a p-value of 0.10. Based on the test

results there is little evidence to suggest that the EGLS estimator is biased for β in model

(2.6).

2.3.5 Test for EGLS Variances vs. Stratified Cluster Variances

In our analyses we have used EGLS variances instead of stratified cluster variances, where

stratified cluster variances account for the complex sample design. In Table 2.9 we give the

EGLS variances and stratified cluster variances for the EGLS estimates given in the first column

of Table 2.11. The estimated variances are similar for most of the model variables. We ran an

analysis of variance (ANOVA) on the EGLS residuals from the 2003-2004 sample to check if

the residuals were significantly different by strata and PSU (Table 2.10). The residuals used

in the ANOVA are of the form

ê∗hij = y∗hij − x′∗hijβ̂∗EGLS ,

where y∗hij , x∗hij , and β̂∗EGLS are defined in (2.8). Neither the strata effect nor the PSU effect

are significant in the ANOVA based on F-tests.

2.3.6 Model Comparisons Across Samples

As part of our analyses, we want to determine if the models developed using the 2003-2004

female NHANES sample (models (2.6) and (2.12)) give similar results when they are fit to the

2005-2006 female NHANES sample. Following the procedures from Section 2.3.1 and 2.3.2,

we fit model (2.6) to the 2005-2006 NHANES sample using the OLS estimator given by (2.5).

Model estimates and residuals are computed using (2.10) and (2.11) based on the estimated

regression coefficients from the OLS model fit. Model (2.12) is then fit first using OLS and
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Table 2.9 EGLS and stratified cluster (Str. Clus.) standard errors (SE) for

model (2.6) fit to the 2003-2004 NHANES sample using EGLS

Variable Est EGLS SE Str. Clus. SE

trans 1.754 0.297 0.292

mod 1.130 0.172 0.189

vig 2.065 0.318 0.343

age2 0.108 0.022 0.027

mexblackmod -0.882 0.286 0.411

mexvig -0.925 0.728 0.436

mexblackage 0.093 0.036 0.037

Table 2.10 ANOVA for the EGLS standardized residuals

Source DF Sum of Squares Mean Square F

Strata 14 16.73 1.19 1.26

PSU(Strata) 15 15.25 1.02 1.07

Error 1539 1460 0.95

Total 1568 1492

second using weighted least squares, where the weights are the inverses of the predicted values

from the first model fit (to account for heterogeneity in the error variances). The estimates of

α0, α1, and α2 are 5.79 (5.87), 8.96 (4.38), and 1.28 (0.21), respectively, for the second model

fit, where the standard errors are given in the parentheses. An estimate of the error variance

for element hij in the 2005-2006 NHANES sample is

v̂hij = 5.79 + 8.96(ŷhij)
1.28.

Finally, model (2.6) is fit to the 2005-2006 female sample using the EGLS estimator (2.8).

Standard errors for the estimates are computed using the EGLS variance (2.9). The estimated

regression coefficients and standard errors are given in the second column of Table 2.11.

From Table 2.11, we see that the results are relatively similar for the two samples. The

regression coefficients on trans, mod, vig, age2, and mexblackmod have similar estimates and

standard errors. The regression coefficients on mexvig and mexblackage are more dissimilar

across samples than the other regression coefficients, but the estimated coefficients are both

negative for mexvig and both positive for mexblackage. To test if β in (2.6) is the same for
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the two NHANES samples, we define the test statistic

F = p−1(β̂∗1,EGLS − β̂∗2,EGLS)′[V̂ (β̂∗1,EGLS) + V̂ (β̂∗2,EGLS)]−1(β̂∗1,EGLS − β̂∗2,EGLS), (2.16)

where β̂∗1,EGLS is the EGLS estimator for model (2.6) fit to the 2003-2004 NHANES sample,

β̂∗2,EGLS is the EGLS estimator for model (2.6) fit to the 2005-2006 NHANES sample, and

V̂ (β̂∗1,EGLS) and V̂ (β̂∗2,EGLS) are the corresponding estimated variance matrices of β̂∗1,EGLS

and β̂∗2,EGLS , respectively, computed using (2.9). If we assume that the two NHANES samples

are selected independently, under the null hypothesis that β is the same for both samples

and given regularity conditions, F in (2.16) is approximately distributed as an F with p and

n1 + n2 − 2p degrees of freedom, where p is the dimension of β and n1 and n2 are the sample

sizes. The F statistic computed for the NHANES samples is 1.81 with (7, 3077) degrees of

freedom and a p-value of about 0.08. Hence, there is modest evidence suggesting that the β

vector in (2.6) is different for the 2003-2004 and 2005-2006 samples. We may expect some

difference in the estimates, because the model was developed based only the 2003-2004 data

and not the 2005-2006 data. But, given the test results, the bias from variable selection appears

to be modest.

Table 2.11 Estimated regression coefficients for model (2.6) fit to the

2003-2004 and 2005-2006 NHANES samples using EGLS

Variable 2003-2004 Est (SE) 2005-2006 Est (SE)

trans 1.754 (0.297) 1.449 (0.221)

mod 1.130 (0.172) 1.260 (0.182)

vig 2.065 (0.318) 1.415 (0.265)

age2 0.108 (0.022) 0.094 (0.016)

mexblackmod -0.882 (0.286) -1.080 (0.231)

mexvig -0.925 (0.728) -0.014 (0.602)

mexblackage 0.093 (0.036) 0.013 (0.025)

We can use the same testing procedure given above to test for the difference in α =

(α0, α1, α2)
′ from the variance model (2.12) across sample years. The test statistic is

F = p−1(α̂0304 − α̂0506)
′[V̂0304 + V̂0506]

−1(α̂0304 − α̂0506),

where α̂0304 and α̂0506 are the estimates of α for the 2003-2004 and 2005-2006 samples, respec-
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tively, V̂0304 and V̂0506 are the estimated covariance matrices of α̂0304 and α̂0506, respectively,

and p is the dimension of α. The F test statistic is 0.14 on (3, 3085) degrees of freedom with

a p-value of 0.94, giving little evidence to suggest that the variance model is different across

samples.

2.3.7 Model for Full Sample

Given the test results from Section 2.3.6, we combine the samples and fit the models to the

full data set. We use similar procedures to the procedures of Sections 2.3.1 and 2.3.2. First, we

fit model (2.6) using EGLS, where the weights are the inverses of the estimated variances given

by (2.13) and (2.16) for elements in the 2003-2004 sample and 2005-2006 sample, respectively.

Second, we fit the variance model (2.12) using EGLS and the estimates and residuals from the

initial model fit of (2.6), where the weights are the inverses of the estimated variances given

by (2.13) and (2.16). Third, we refit model (2.12) using EGLS, where the weights are the

inverses of the estimated values from the initial model fit. Fourth, we fit model (2.6) using

EGLS with the estimated variances from the second fitting of model (2.12). The estimated

regression coefficients and standard errors are given in Table 2.12. The estimates are similar

to the estimates from Table 2.11, but have smaller standard errors given that the model is fit

with a larger sample. Using the test described in Section 2.3.4, we test to see if the survey

weights are significant in the regression estimation for the full sample. The F test statistic is

1.51 on (7, 3077) degrees of freedom with a p-value of 0.16. Hence, the evidence suggests that

the survey weights have little influence on the expected value of the estimates.

To evaluate the EGLS model fit of (2.6) to the full sample, we look at group means and

standard deviations of the standardized residuals. Let ŷ∗hij = x′∗hijβ̂
∗
EGLS and ê∗hij = y∗hij −

ŷ∗hij for individual hij in the full sample, where x∗hij , y∗hij , and β̂∗EGLS are defined in (2.8).

We sorted {ŷ∗hij , ê∗hij} by ŷ∗hij , divided the data into ten groups of approximately equal size,

and computed group means of ŷ∗hij and ê∗hij and group standard deviations of ê∗hij . The first

group in each of the samples is restricted to be the set of {ŷ∗hij , ê∗hij} values, where ŷ∗hij is

equal to zero so that the group mean of ŷ∗hij is zero by default. Based on our model, individuals
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Table 2.12 Estimated regression coefficients for models (2.6) and (2.12) fit

to the full NHANES sample using EGLS

Model (2.6) Model (2.12)

Variable Est (SE) Coefficient Est (SE)

trans 1.552 (0.191) α0 1.579 (3.484)

mod 1.184 (0.129) α1 12.417 (3.548)

vig 1.692 (0.218) α2 1.203 (0.135)

age2 0.104 (0.012)

mexblackmod -1.033 (0.170)

mexvig -0.335 (0.497)

mexblackage 0.035 (0.020)

older than 75 who report zero activity will have ŷ∗hij values of zero. Plots of the standardized

group means and standard deviations are given in Figure 2.2. The plot on the left compares

group means of the estimates to group means of the residuals. The plot on the right compares

group means of the estimates to group standard deviations of the residuals. In the plot on the

right, the standard deviation of the residuals for the first group is much lower than the standard

deviations of residuals for the other nine groups. This occurs because a large majority of the

residuals are zero when ŷ∗hij is zero. That is, the vast majority of individuals are estimated to

have zero MVPA from the fitted model also measure zero accelerometer MVPA.

Figure 2.2 Plot of standardized group means and standard deviations
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We consider an additional model adjustment to account for estimation of zero accelerometer

MVPA. In the full sample there are 219 individuals with ŷ∗hij = 0 from the model fit. The

sample mean and variance of measured accelerometer-based activity is 0.093 (min/day) and

0.612 (min/day)2, respectively, for the same 219 individuals. We use these estimates as the

intercepts in our mean and variance models. To implement the restrictions, we refit models

(2.6) and (2.12) and fix the intercept in model (2.6) at 0.093 and the intercept in the variance

model (2.12) at 0.612. The restricted models are

yhij = 0.093 + β1transhij + β2modhij + β3vighij + β4age2hij + β5mexblackmodhij

+β6mexvighij + β7mexblackagehij + ehij

= 0.093 + x′hijβ + ehij (2.17)

and

vhij = 0.612 + α1(ŷhij)
α2 , (2.18)

where ŷhij is the estimated value from model (2.17) for yhij .

To get estimates for the new means model we first regress yhij−0.093 on the model variables

(xhij) in (2.17) using EGLS, where we use the estimated variances from the fitted variance

model given in Table 2.12. The final set of estimates are computed using estimated variances

from the restricted variance model (see below). We fit model (2.17) using only the data with

positive ŷ∗hij values from the model fit of (2.6) given in Table 2.12. Let β̂res denote the vector

of fitted regression coefficients from model (2.17). The estimated variance matrix of β̂res is

(X ′X)−1X ′[Iσ̂2e + JJ ′σ̂2e0]X(X ′X)−1, (2.19)

where X is the matrix of x∗hij variables from the model, I is an identity matrix, JJ ′ is a

matrix of 1’s, σ̂2e is the estimated error variance from the model fit for the residuals with

positive estimated MVPA, and σ̂2e0 is the estimated variance of the mean of individuals with

zero estimated MVPA.

Next, we fit model (2.18) using the squared residuals and ŷhij values from the model fit

of (2.6), where the response variable is ê2hij − 0.612. We fit this model with EGLS, using the
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estimated variances from the variance model given in Table 2.12. We do the fitting using

only the data with positive ŷ∗hij values from the model fit of (2.6) given in Table 2.12. The

variance model is refit using the inverse of the estimated values from the first fit as the weights

in the second fit to account for heterogeneity in the errors. Let α̂res denote the vector of

fitted regression coefficients from model (2.18). The estimated variance matrix of α̂res is

approximated using the form given by (2.19), where the rows in X are the partial derivatives

of α1(ŷhij)
α2 with respect to α1 and α2 evaluated at α̂res. The estimated regression coefficients

and standard errors for models (2.17) and (2.18) are given in Table 2.13. Plots of the group

means and standard deviations of the standardized residuals for the restricted model are given

in Figure 2.3. The groups used to construct the plots in Figure 2.2 were also used to construct

the plots in Figure 2.3.

Table 2.13 Estimates and standard errors for models (2.17) and (2.18) fit

using EGLS

Model (2.17) Model (2.18)

Variable Est (SE) Coefficient Est (SE)

Intercept (restricted) 0.093 (0.002) Intercept (restricted) 0.612 (0.285)

trans 1.546 (0.221) α1 13.681 (3.510)

mod 1.181 (0.171) α2 1.167 (0.090)

vig 1.791 (0.245)

age2 0.095 (0.017)

mexblackmod -0.984 (0.194)

mexvig -0.587 (0.500)

mexblackage 0.050 (0.021)

2.4 Estimation and Prediction of Daily MVPA

The fitted models (2.17) and (2.18) with estimated regression coefficients given in Table

2.13 can be considered for estimating overall group means of MVPA in groups of the female

population and for predicting average daily MVPA for individuals in the population. First we

consider estimation of a group mean of MVPA. Let

cg = (transg,modg, vigg, age2g,mexblackmodg,mexvigg,mexblackageg)
′
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Figure 2.3 Plot of standardized group means and standard deviations for

the restricted model

be a vector of model variables that define a group g in the female population. For example,

the group may be defined by Mexican females younger than 60 who report zero activity. The

group mean of MVPA is (1, c′g)(0.93,β′)′, where β is given in model (2.17). An estimate of

the group mean is

ŷg = (1, c′g)(0.093, β̂′res)
′,

where β̂res is the estimated vector of regression coefficients given in Table 2.13. The standard

error of the estimate is

SE(ŷg) =
√

0.612 + c′gV̂ {β̂res}cg,

where V̂ {β̂res} is the EGLS variance of β̂res. For illustration, consider the group of females

in the population who report 7 minutes of average daily transportation activity, 18 minutes of

average daily moderate leisure activity, and 8 minutes of average daily vigorous leisure activity,

for a total of 33 minutes of average daily MVPA. Using our model, we can estimate average

daily MVPA for subgroups of this female group based on the reports, race/ethnicity, and age

(Table 2.14). For example, the estimated mean of average daily MVPA is 9.3 minutes for the

group of black females younger than 60 who report 33 minutes of activity. The estimated
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means in the table are much smaller than the reported estimate of 33 minutes of MVPA that

is based on the questionnaire. The means are different based on age and race/ethnicity.

Table 2.14 Example estimated average daily accelerometer MVPA in

groups of the female population for 33 minutes of reported

MVPA

Race/Ethnicity

Age Black Mexican Other

< 60 9.3 (1.2) 8.1 (1.4) 11.2 (1.3)

70 7.9 (1.1) 6.7 (1.4) 10.2 (1.2)

> 75 7.1 (1.1) 6.0 (1.3) 9.7 (1.2)

Next, we consider prediction of average daily MVPA for an individual in the female popu-

lation. Let xk denote the vector of model variables for individual k in the female population.

The predicted average daily MVPA for the individual is

ŷk = (1,x′k)(0.093, β̂′res)
′

with a standard error of

SE(ŷk) =

√
v̂k + x′kV̂ {β̂res}xk,

where

v̂k = 0.612 + 13.681ŷ1.167k

is the estimated error variance of individual k given by the fitted variance model. Suppose

that we want to predict average daily MVPA for a hypothetical individual who reports 7

minutes of average daily transportation activity, 18 minutes of average daily moderate leisure

activity, and 8 minutes of average daily vigorous leisure activity, for a total of 33 minutes of

average daily MVPA. For illustration, we consider different ages and race/ethnicity groups for

the individual. The predicted values and standard errors for these groups are given in Table

2.15. The predicted values are the same as the estimated values in Table 2.14 because we

are using the same values for the report variables trans, mod, and vig in the computations.

The standard errors in Table 2.15, however, are larger than the standard errors in Table 2.14
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because in Table 2.15 we give predictions of average daily MVPA for an individual, which are

less precise than the estimated means of average daily MVPA for a group in the population.

The standard errors are large because of large v̂k terms that are estimated from the variance

model.

In Table 2.15 we also give 95% prediction intervals for the predicted values. In prelimi-

nary analyses, a cube root transformation was shown to give approximately normal data for

nonzero accelerometer MVPA. Thus, we construct prediction intervals in the cube root scale

and transform the interval limits to the original scale. For a predicted value ŷk in the original

scale, the 95% prediction interval in the cube root scale is ŷ
1/3
k ± 1.96

√
V̂ (ŷ

1/3
k ), where

V̂ (ŷ
1/3
k ) ≈

[
1

3
ŷ
−2/3
k

]
V̂ (ŷk)

by the delta method and V̂ (ŷk) is the variance of ŷk. The 95% prediction interval in the

original scale is obtained by taking the cube of the lower and upper bounds of the cube root

scale interval. The lower bounds of all the prediction intervals were close to zero. Lower bounds

that were less than zero were set to zero in Table 2.15.

Table 2.15 Example predicted average daily accelerometer MVPA for an

individual in the female population for 33 minutes of reported

MVPA (standard errors are in parentheses and 95% prediction

intervals are in brackets)

Race/Ethnicity

Age Black Mexican Other

< 60 9.3 (13.6) 8.1 (12.7) 11.2 (15.2)

[0.0, 70.5] [0.0, 67.4] [0.0, 75.7]

70 7.9 (12.4) 6.7 (11.3) 10.2 (14.4)

[0.0, 66.2] [0.0, 62.9] [0.0, 73.0]

> 75 7.1 (11.7) 6.0 (10.6) 9.7 (14.0)

[0.0, 64.0] [0.0, 60.6] [0.0, 71.6]

2.5 Discussion

The results given in Table 2.14 suggest that the female physical activity model developed in

Section 2.3 is reasonable for estimating means of average daily MVPA for groups in the female
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population. We recommend that researchers use the model when estimating means of average

daily MVPA in the population instead of using the questionnaire data because the activity

reports from the questionnaire data overestimate means in the population. This is illustrated

in our example, where the mean of average daily MVPA based on the reports was given as 33

minutes and the estimated means from the model were between 6 and 11 minutes depending

on the age and race/ethnicity group being considered. The results given in Table 2.15 suggest

that the female physical activity model has large relative variance for predicting the average

daily MVPA for individuals in the female population. In our example, the standard errors are

larger than the predicted average daily MVPA values for each age and race/ethnicity group

considered and the 95% prediction intervals cover a large range of values.

Based on our analyses, the self-report variables from the NHANES questionnaire are not

very good indicators of individual average daily MVPA. In general, the questionnaire estimates

of average daily MVPA were larger and more variable than the accelerometer estimates of av-

erage daily MVPA. This is illustrated in Figure 2.1, which shows some extreme questionnaire-

based estimates of MVPA. The results suggest that a redesign of the questionnaire be con-

sidered. For example, the questionnaire could be redesigned by asking survey participants to

report on their activity from the previous day instead of the previous 30 days. Research has

shown that individuals have more difficulty reporting on activity over a long period of time,

such as 30 days, than they do for shorter periods of time, such as a day or week (Matthew

2002).

Given the current NHANES design, each survey participant in a subsample provides one

set of physical activity measurements via the questionnaire and accelerometer. If multiple

accelerometer measurements were available for some of the survey participants, one could use

measurement error models to model the between-person variation and within-person variation

in the physical activity data and develop methods for estimating physical activity parameters

in the population based on the estimated between-person variation in physical activity. This

line of research is developed in Chapter 3.
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CHAPTER 3 A METHOD FOR ESTIMATING USUAL DAILY

ENERGY EXPENDITURE PARAMETERS

3.1 Introduction

Assessment of usual or habitual physical activity is important for studying relationships

between physical activity and health and for determining appropriate physical activity guide-

lines to maintain good health (Shephard 2003). One component of this assessment involves

estimation of usual daily energy expenditure (EE) parameters. EE is a measure of the energy

cost associated with physical activity (Schutz et al. 2001). An individual’s usual daily EE is

his or her average daily EE over a long period of time, such as one year. From a statistical

perspective, usual daily EE of individual i is

Ti = E{Tij |i},

where Tij is the actual daily EE of individual i on day j.

The instruments most commonly used to measure daily EE from individuals in the pop-

ulation are self-report instruments (Ainsworth 2009; Matthews 2002) and monitoring devices

(Welk 2002; Moy et al. Submitted), both of which provide imperfect measurements of usual

daily EE. An observed measurement of daily EE for individual i on day j, defined as Yij , will

differ from the usual daily EE for individual i, Ti, because of nuisance effects (Matthews et al.

2001; Matthews et al. 2002) and measurements errors (Ainsworth 2009; Welk 2002). Nuisance

effects, such as seasonality and day-of-week effect, exist because individuals vary their physical

activity habits on a daily basis. Measurement errors from monitoring devices are due to the

inability of monitors to accurately capture the full range of activities (Welk et al. 2004) and

the imperfect conversion process of monitor data into EE estimates (Welk 2002). Measurement
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errors from self-report instruments are due to such factors as social desirability effects (Adams

et al. 2005), difficulty in understanding concepts of survey questions (Sallis and Saelens 2000),

and cognitive limitations for recalling activity from the past (Matthews 2002). The difference

between actual daily EE and usual daily EE may be defined as

Dij = Tij − Ti

for individual i on day j, and can be attributed to nuisance factors. For example, if individual

i was more active than he or she usually is on day j, then Dij > 0. The difference between

measured and actual daily EE may be defined as

Eij = Yij − Tij ,

and can be attributed to measurement errors. For example, if individual i reports more activity

than he or she actually did on day j using a self-report instrument, then Eij > 0. The total

difference between observed EE (Yij) and usual daily EE (Ti) is then

Yij − Ti = Tij − Ti + Yij − Tij

= Dij + Eij ,

for individual i on day j, which is the sum of the nuisance effect (Dij) and the measurement

error effect (Eij).

Failure to account for the measurement error and nuisance effects in daily EE measurements

may lead to biased estimates of usual daily EE parameters. Troiano et al. (2008) demonstrate

the potential for bias in self-reported physical activity measurements using physical activity

data from the 2003-2004 NHANES sample. The percent of individuals in the U.S. population

who adhere to physical activity guidelines set by the U.S. Department of Health and Human

Services was estimated separately using accelerometer measurements and questionnaire-based

measurements of physical activity from the NHANES sample. Less than 10% of individuals

age 12 and older were estimated to adhere to the physical activity guidelines based on the

accelerometer measurements, while over 50% of individuals were estimated to adhere to the

same guidelines according to the questionnaire measurements of physical activity (Troiano et
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al. 2008). These results suggest that individuals may overreport on their activity, which can

lead to over-estimation of physical activity levels in the population, and that the accelerom-

eters may underreport on individuals’ activity, since accelerometers do not capture the full

range of activity. Ferrari et al. (2007) show evidence of bias in measurements of EE from a

physical activity questionnaire. The authors fit a measurement error model to data from a

sample of 154 adults in a study conducted at the Alberta Cancer Board (Friedenreich et al.

2006), where each adult provided four weekly measurements of EE from an accelerometer, four

weekly measurements of EE from a physical activity log, and one measurement of EE from

a questionnaire. All EE measurements were in MET-hours/week. The estimated attenuation

factor for the questionnaire, which assesses the ability to measure usual EE from the ques-

tionnaire measurements, was 0.13 with a 95% confidence interval of (0.05, 0.23). Given that

the estimate is close to 0, the authors conclude that there is evidence of bias in the physical

activity questionnaire measurements.

The potential for bias is also a concern in dietary intake studies because, as in measure-

ments of EE or physical activity, measurements of nutrient and food intakes are prone to

measurement error and nuisance effects. Nusser et al. (1996) show that using the unadjusted

individual means of daily intake measurements from a 24-hour recall to estimate a distribution

function of usual daily intake can lead to biased inferences regarding dietary status, and sug-

gest an alternative approach for estimating usual intake distributions which accounts for the

measurement error and nuisances effects in daily intake measurements using statistical models.

Kipnis et al. (2003) provide evidence of bias in both food frequency questionnaires and 24-hour

food recalls for measuring usual intake of energy and protein, and suggest the use of reference

instruments such as doubly labeled water or urinary nitrogen for calibrating these self-report

instruments.

In this paper, we develop a method for estimating usual daily EE parameters that accounts

for the measurement error and nuisance effects in observed EE data. In our method, parame-

ters of usual daily EE are estimated from a sample of individuals in the population, where each

individual provides replicate concurrent measurements of daily EE using a reference instru-
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ment, such as a multi-sensor monitor, and a self-report instrument, such as a 24-hour recall.

Like some of the other methods in the physical activity and dietary intake literature (Ferrari et

al. 2007; Nusser et al. 1996; Kipnis et al. 2003), our method adjusts for the measurement error

and nuisance effects associated with observed values of EE using measurement error models.

Like the models presented in Ferrari et al. (2007) and Kipnis et al. (2003), our models also

account for systematic reporting biases from a self-report instrument. Unlike these other meth-

ods, our method includes a procedure for estimating usual daily EE parameters simultaneously

for distinct groups in the population, which may be defined by gender, age, and race/ethnicity.

This extension allows researchers to compare EE across groups that are of interest in physical

activity assessment.

Our method consists of several steps, which we briefly outline in this section. The steps are

used to estimate and remove measurement error and bias in the EE data before estimating usual

daily EE parameters. In the first step of our method, we transform the EE data to approximate

normality and test for the presence of a variety of nuisance factors. In our analyses, a log

transformation gives approximately normal data, but in other cases, a power transformation

or a more complex semiparametric transformation may be necessary to approximate normality.

The transformation is important because the normality assumption is required to model the

distribution of usual daily EE.

We test for nuisance effects in the transformed data by fitting separate linear regression

models to the EE measurements from the reference instrument and self-report instrument,

which include nuisance effects parameters. Common nuisance effects to consider are day-of-

week effect (e.g., weekday vs. weekend), time-in-sample effect (e.g., first vs. second replicate),

and seasonality (e.g., summer vs. winter). In our analyses, we consider only variables for

day-of-week effect and time-in-sample effect in our models and not variables for seasonality

because individuals in the preliminary sample we use are measured for EE in the same season.

If a nuisance effect is significant in the fitted linear regression models, the estimated effect is

removed from the EE data and the remainder of the analyses are conducted with the adjusted

EE data. If a nuisance effect is non-significant in the fitted models, the EE data are not
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adjusted for that effect. The procedure for transforming the data to normality and testing for

nuisance effects is described in Section 3.2.1.

In the next step, models are fit to the adjusted normal-scale EE data to account for sources

of variation and bias in the data and to estimate parameters of the usual daily EE distribution.

Assessment of usual daily EE in subpopulations (hereafter referred to as groups) is often of

interest to public health researchers. In our method, groups can be defined by gender, age,

race/ethnicity, or other factors with the goal of comparing model parameters for EE behaviors

across these groups. After the groups are identified, a group-level measurement error model

is fit to each group using method of moments. The same measurement error model is fit

to each group so that parameter estimates can be compared across groups. A population-

level model is then developed based on the group-level estimates so that the total number of

model parameters may be reduced. If there is evidence that a group-level model parameter is

similar across groups, the parameter may be pooled across the groups. If there is evidence of a

systematic trend in a group-level parameter across groups, the trend can be accounted for with

fewer parameters in the population-level model. Once the population-level model is specified,

the model is fit to group-level moment estimators using estimated generalized least squares

and estimated daily EE parameters are obtained. The group-level and population-level models

are developed in Sections 3.2.2 and 3.2.3, respectively.

As a final step of our method, we give a procedure for estimating a distribution of usual

daily EE for each group in the original scale. For the procedure, daily EE values are generated

from an estimated normal-scale distribution of mean daily EE for the group, and the generated

values are transformed to the original scale to create an estimated distribution of usual daily

EE in the original scale. In our presentation we give the procedure for a log transformation,

but other procedures will be needed if a power or semiparametric transformation was used in

the transformation to normality. The procedure is given in Section 3.2.4.

Our method is developed to account for complex sample designs by incorporating weights

into the analyses. Each individual i in the sample is assigned a weight of wi which reflects

the individual’s probability of selection based on the sample design and the model parameters
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are estimated using weighted-estimation approaches. When it is of interest to the researcher

to conduct an unweighted (or equal-weight) analyses, where the weights are set to 1 for all

individuals in the sample, the researcher should first compare the unweighted and survey-

weighted analyses to see if the results are different (i.e., to see if the sample design is informative

to the analyses). In Appendix C we give a test for comparing the unweighted and survey-

weighted estimators for parameters of the population-level model given in Section 3.2.3. In

our analyses of the preliminary PAMS data, the test is non-significant at the 0.05 level, giving

evidence that the unweighted and survey-weighted analyses provide similar results. Thus, we

give results for an unweighted analysis of the PAMS data in Section 3. Results from the fitted

population-level model based on the survey-weighted analyses are given in Appendix C.

This chapter is outlined as follows. First we develop our method in Section 3.2. Then,

we illustrate our method by estimating usual daily EE parameters from a preliminary sample

of females in the Physical Activity Measurement Survey (PAMS) in Section 3.3. We give a

discussion of the results in Section 3.4.

3.2 Methodology

In this section, we develop a method for estimating usual daily EE parameters from a

sample of n individuals who provide daily EE measurements. We assume that each individual

i has a survey weight wi, which reflects the individual’s probability of selection, and that each

individual is measured for daily EE on two days. On each measurement day, the individuals

are measured for EE using an unbiased reference instrument, such as a multi-sensor monitoring

device, and a self-report instrument, such as a 24-hour recall. Let Xij be the measurement of

EE for individual i on day j from the reference instrument and let Yij be the measurement of

EE for individual i on day j from the self-report instrument, where j = 1, 2. The complete set

of measurements for individual i is (Xi1, Xi2, Yi1, Yi2). Define Ti to be the true usual daily EE

for individual i in the original scale. Assume that Ti, Xij , and Yij are all given in the same

units (e.g., kilocalories per day or MET-minutes per day).

We divide the population into groups, which are chosen so that usual daily EE parameters
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can be compared across the groups. The groups may be defined by any variable, but EE levels

have been shown to differ by gender, age, and race/ethnicity (Matthews 2002; Ferrari et al.

2007; Marshall et al. 2007; Ainsworth 2009).

3.2.1 Transformation to Normality and Test for Nuisance Effects

In our method, we assume normality when fitting measurement error models (Section 3.2.2).

Thus, the first step in our method is to transform the original-scale daily EE data (Xij and

Yij) to approximate normality. Let

x∗ij = h(Xij)

and

y∗ij = h(Yij),

where h(·) is a continuous function and the set of x∗ij values and the set of y∗ij values are

both approximately normal. The same transformation, h(·), for both the reference EE data

and self-report EE data is assumed. In practice, the choice of h(·) will depend on the EE

data from the sample. For EE data, a log transformation may be sufficient. Using EE data

in the log scale for analyses is appealing from a subject matter perspective because log-scale

data are often considered in physical activity research to approximate normality. Ferrari et

al. (2007) consider weekly measurements of EE in the log scale to approximate normality.

If normality cannot be achieved using log-scale EE data, a power transformation or a more

complex transformation such as the semiparametric transformation proposed by Nusser et al.

(1996) may be required.

A Shapiro-Wilk test (Shapiro and Wilk 1965) can be used to test the normality of the

transformed x∗ij values and y∗ij values in unweighted data. In our procedure, we consider the

transformed data to be approximately normal if the p-values of the two test statistics are greater

than 0.10. If at least one of the p-values is less than or equal to 0.10, other transformations will

be considered. When considering survey-weighted data, an approximate equal-weight sample

can be created from the survey-weighted sample before testing for normality. A procedure
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for creating an equal-weight sample from a survey-weighted sample is given in Section 2.4 of

Nusser et al. (1996).

Daily EE data include nuisance effects that are not of interest in estimating usual daily EE

parameters. Some nuisance effects are day-of-week effect, time-in-sample effect, and seasonality

(Matthews et al. 2001; Matthews et al. 2002). To test for nuisance effects in the EE data,

we define linear regression models for the reference monitor and self-report EE data. The

regression models include variables for the nuisance effects and variables for other demographic

factors that are potentially related to EE, such as age, gender, and race/ethnicity, so that the

estimated nuisance effects do not include the effects from these other factors. Let x∗ij and y∗ij

be the daily EE values from the reference instrument and self-report instrument in the normal

scale, respectively, for individual i on day j and let

x∗ij = z′1,ijγx,1 + z′2,ijγx,2 + εx,ij

= (z′1,ij , z
′
2,ij)(γ

′
x,1,γ

′
x,2)
′ + εx,ij

= z′ijγx + εx,ij (3.1)

and

y∗ij = z′1,ijγy,1 + z′2,ijγy,2 + εy,ij

= (z′1,ij , z
′
2,ij)(γ

′
y,1,γ

′
y,2)
′ + εy,ij

= z′ijγy + εy,ij (3.2)

define the regression models for the nuisance effects, where z1,ij is a vector of nuisance variables,

z2,ij is a vector of other variables of interest, γx is the vector of model parameters for model

(3.1), γy is the vector of model parameters for model (3.2), and εx,ij ∼ (0, σ2x,i) and εy,ij ∼

(0, σ2y,i) are model error terms for individual i on day j. We assume that εx,ij and εx,i′j′ are

independent for i 6= i′ and that εy,ij and εy,i′j′ are independent for i 6= i′. The models are

fit by weighted least squares, where the weights are the survey weights (wi). The weighted

estimators for γx and γy are

γ̂x =

 n∑
i=1

2∑
j=1

zijwiz
′
ij

−1 n∑
i=1

2∑
j=1

zijwix
∗
ij (3.3)
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and

γ̂y =

 n∑
i=1

2∑
j=1

zijwiz
′
ij

−1 n∑
i=1

2∑
j=1

zijwiy
∗
ij , (3.4)

respectively. If the sample is selected using a complex design, the design should be accounted

for when estimating the variances of γ̂x and γ̂y. For a stratified design, where individuals

are selected from each of H strata and there are nh individuals selected from stratum h,

h = 1, . . . ,H, an estimated Taylor linearization variance can be constructed for the estimated

vector of regression coefficients γ̂x. Given the design with replicate measurements from each

individual, the individuals are treated as clusters and the replicate measurements are treated

as elements within clusters. The estimated variance of γ̂x is

V̂ (γ̂x) =

 H∑
h=1

nh∑
i=1

2∑
j=1

zhijwhiz
′
hij

−1 Ĝx,WLS

 H∑
h=1

nh∑
i=1

2∑
j=1

zhijwhiz
′
hij

−1 , (3.5)

where

Ĝx,WLS =
n− 1

n− p

H∑
h=1

nh
nh − 1

nh∑
i=1

(shi. − s̄h..)(shi. − s̄h..)′,

shij = zhijwhiε̂x,hij ,

ε̂x,hij = x∗hij − z′hijγ̂x,

shi. =

2∑
j=1

shij ,

s̄h.. = n−1h

nh∑
i=1

shi.,

p is the dimension of γx, and xhij , whi, and zhij are the values of xij , wi, and zij for individual

i in stratum h, respectively. The estimated variance of γ̂y may be defined in a similar manner

as

V̂ (γ̂y) =

 H∑
h=1

nh∑
i=1

2∑
j=1

zhijwhiz
′
hij

−1 Ĝy,WLS

 H∑
h=1

nh∑
i=1

2∑
j=1

zhijwhiz
′
hij

−1 , (3.6)
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where

Ĝy,WLS =
n− 1

n− p

H∑
h=1

nh
nh − 1

nh∑
i=1

(thi. − t̄h..)(thi. − t̄h..)′,

thij = zhijwhiε̂y,hij ,

ε̂y,hij = y∗hij − z′hijγ̂y,

thi. =
2∑
j=1

thij ,

t̄h.. = n−1h

nh∑
i=1

thi.,

and yhij is the value of yij for individual i in stratum h.

We consider t-tests to test for the significance of the individual nuisance effects in the fitted

models. Without loss of generality, we consider the procedure for removing a single nuisance

effect from the EE data. Let zk,ij be the model variable for nuisance effect k, γx,k be the

regression coefficient on zk,ij in model (3.1), γ̂x,k be the weighted least squares estimator of

γx,k, and let se(γ̂x,k) be the standard error of γ̂x,k computed using the Taylor variance (3.5).

A test statistic for H0 : γx,k = 0 is

t = γ̂x,k/se(γ̂x,k). (3.7)

We treat the nuisance effect as significant at the 0.05 level if the absolute value of t is greater

than the upper .025 quantile of a t distribution with n − p degrees of freedom. A significant

nuisance effect is removed by computing an adjusted value of x∗ij as

x∗∗ij = x∗ij − (zk,ij − z̄k,..)γ̂x,k,

where z̄k,.. is the weighted mean of the zk,ij in the sample. In general, if a nuisance effect is

significant at the 0.05 level in model (3.1) and/or in model (3.2), it is removed from the x∗ij

data and the y∗ij data. Once any significant nuisance effects are removed from the data, the

researcher should check to make sure the adjusted data are still approximately normal. If the

normality assumption no longer holds, alternative transformations should be considered. In

what follows, let xij and yij be the EE values for Xij and Yij in the normal scale, respectively,

after being adjusted for significant nuisance effects.
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3.2.2 Group-Level Measurement Error Model

The next step in our method is parameter estimation for a group-level measurement error

model. The group-level model is used to estimate daily EE parameters for each group. Groups

may be defined by gender, age, race/ethnicity or any other factors of interest to the researcher.

In this section, we present a group-level measurement error model and develop estimators for

the model.

Assume that G groups are considered for the analyses, and let g denote the gth group.

Further assume that the EE measurements from group g and group g′ are uncorrelated for

g 6= g′. Let µg be the mean of daily EE in the normal scale for group g and let µg + tgi be the

mean daily EE for individual i in the normal scale, where tgi ∼ N(0, σ2tg). The distribution of

mean daily EE in the normal scale is then given by N(µg, σ
2
tg) for group g. On any given day

j, individual i in group g will have an actual daily EE value of tgij in the normal scale. We

assume that the daily deviations from the individual’s mean daily EE are additive. Thus, our

model for tgij is

tgij = µg + tgi + dgij ,

where dgij ∼ N(0, σ2dg) is individual i’s deviation from his or her mean daily EE on day j in

the normal scale. On days where individual i is more active than usual, dgij will be positive,

and on days where individual i is less active than usual, dgij will be negative. We assume that

tgi and dgij are uncorrelated for all g, i, and j. That is, we assume that an individual’s mean

activity is unrelated to his or her within-individual variation in activity on a day-to-day basis.

Given this assumption, the variance of tgij ,

V {tgij} = V {µg + tgi + dgij}

= σ2tg + σ2dg,

is the sum of the mean daily EE variance (σ2tg) and the within-individual variance (σ2dg).

Let xgij be a measure of daily EE in the normal scale for individual i on day j in group g

from an unbiased reference instrument, such as a multi-sensor monitoring device. We assume
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that the reference instrument gives an unbiased measurement of daily EE in the normal scale,

xgij = µg + tgi + dgij + ugij , (3.8)

where ugij ∼ N(0, σ2ug) is random measurement error for individual i on day j in group g. We

assume that ugij is uncorrelated with tgi and dgij for all g, i, and j, and hence, the variance of

xgij is

V {xgij} = V {µg + tgi + dgij + ugij}

= σ2tg + σ2dg + σ2ug.

Let ygij be a measurement of daily EE in the normal scale for individual i on day j in

group g from a self-report instrument such as a 24-hour recall. We assume that the self-report

measure ygij is potentially biased for actual daily EE in the normal scale and represent ygij as

ygij = µyg + β1g(tgi + dgij) + rgi + egij , (3.9)

where µyg is the group mean of daily EE in the normal scale from the self-report instrument,

β1g is the slope that accounts for the systematic error in the relationship between self-report

and actual daily EE in group g, rgi ∼ N(0, σ2rg) is a term that represents individual i’s deviation

from the group-level mean, and egij ∼ N(0, σ2eg) is the remaining measurement error in the

self-report for individual i on day j in group g. We assume that the model terms rgi and egij

are uncorrelated with each other, with tgi and dgij , and with ugij from model (3.8) for all g, i,

and j. Like model (3.8), model (3.9) assumes an additive linear relationship between measured

EE and mean daily EE in the normal scale. Unlike model (3.8), model (3.9) includes a different

overall mean, µyg, and a slope term, β1g, to account for systematic error that may arise from

self-reporting EE.

To identify the parameters of the measurement error model given by equations (3.8) and

(3.9), we assume that the reference measure gives an unbiased measurement of mean daily EE.

This assumption may not be reasonable if the measurement is from a monitor that is known to

have bias. For example, it is recognized that accelerometers are unable to capture some types

of physical activity (Welk et al. 2004) and may give biased measurements of daily EE. The



67

assumption of an unbiased reference measure is more reasonable if measurements come from a

multi-sensor device such as the SenseWear armband monitor. SenseWear monitors have been

shown to provide accurate measurements of daily EE in free-living conditions when compared

to doubly labeled water, which is considered a gold standard for measuring EE (Moy et al.

Submitted; Calabro et al. 2009).

We use method of moments to derive estimators of the parameters for the group-level

measurement error model. The estimators are given as weighted estimators, where wgi is the

weight for individual i in group g. Let the 8-dimensional parameter vector for group g be

defined by

θg = (µg, µyg, β1g, σ
2
tg, σ

2
dg, σ

2
ug, σ

2
eg, σ

2
rg)
′. (3.10)

To compute estimators for θg, we consider summary statistics based on

Zgi =



x̄gi.

ȳgi.

xgi1 − xgi2

ygi1 − ygi2


, (3.11)

where

x̄gi. =
xgi1 + xgi2

2

and

ȳgi. =
ygi1 + ygi2

2
.

We define Zgi in this manner because Zgi provides an algebraically simpler covariance ma-

trix than the observed data vector (xgi1, xgi2, ygi1, ygi2)
′. Given the model assumptions, the

expected value of Zgi is

E{Zgi} =



µg

µyg

0

0


(3.12)
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and the variance of Zgi is

V {Zgi} =


σ2
gt +

1
2
σ2
gd + 1

2
σ2
gu β1gσ2

tg + 1
2
β1gσ2

dg 0 0

β2
1g(σ

2
tg + 1

2
σ2
dg) + σ2

rg + 1
2
σ2
eg 0 0

2(σ2
dg + σ2

ug) 2β1gσ2
dg

symmetric 2(β2
1gσ

2
dg + σ2

eg)

 . (3.13)

The sample mean of Zgi is

m1g =



m1g

m2g

0

0


, (3.14)

where

m1g =

∑ng

i=1wgixgi.∑ng

i=1wgi
,

m2g =

∑ng

i=1wgiygi.∑ng

i=1wgi
,

and ng is the number of individuals in group g. The sample variance of Zgi is

m2g =

∑ng

i=1wgi(Zgi − Z̄g)(Zgi − Z̄g)′∑ng

i=1wgi
,

where

Z̄g =

∑ng

i=1wgiZgi∑n
i=1wgi

is the group sample mean of the Zgi. For deriving the method of moments estimating equations,

we write

m2g =



m11g m12g 0 0

m22g 0 0

m33g m34g

sym. m44g


, (3.15)

where the sample moments m13g, m14g, m23g, and m24g are set to zero since their corresponding

population moments in (3.13) are all zero.
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The estimating equations are

m1g = E{Zgi}

and

m2g = V {Zgi},

where m1g and m2g are defined by (3.14) and (3.15), respectively, and E{Zgi} and V {Zgi}

are defined by (3.12) and (3.13), respectively. There are eight model parameters and eight

unique first and second moments in these equations, which allows for identification of each

model parameter as a function of the sample moments. The method of moments estimators

are given in Table 3.1. In what follows, we let

θ̂g = (µ̂g, µ̂yg, β̂1g, σ̂
2
tg, σ̂

2
dg, σ̂

2
ug, σ̂

2
eg, σ̂

2
rg)
′ (3.16)

denote the method of moments estimator for the parameter vector θg in (3.10).

Table 3.1 Method of moments estimators for group g

Parameter Estimator

µg µ̂g = m1g

µyg µ̂yg = m2g

β1g β̂1g = (m12g − 0.25m34g)/(m11g − 0.25m33g)

σ2tg σ̂2tg = m11g − 0.25m33g

σ2dg σ̂2dg = [m34g(m11g − 0.25m33g)]/[2(m12g − 0.25m34g)]

σ2ug σ̂2ug = 0.5m33g − [m34g(m11g − 0.25m33g)]/[2(m12g − 0.25m34g)]

σ2eg σ̂2eg = 0.5m44g − [m34g(m12g − 0.25m34g)]/[2(m11g − 0.25m33g)]

σ2rg σ̂2rg = m22g − 0.25m44g − [(m12g − 0.25m34g)
2]/[m11g − 0.25m33g]

A Taylor series approximation is used to derive an estimated variance matrix for θ̂g. The

approximation is given by

V̂ {θ̂g} = D̂gV̂ {mg}D̂′g, (3.17)

where D̂g is a matrix of derivatives for the method of moments estimators evaluated at the

method of moments estimates and V̂ {mg} is an estimated variance of the sample moments

mg = (m1g,m2g,m11g,m12g,m22g,m33g,m34g,m44g)
′. (3.18)
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To derive the matrix of derivatives, let mgk denote the kth element in mg for k = 1, . . . , 8

and let bl(mg) be a function of mg that represents the lth method of moments estimator in

Table 3.1 for l = 1, . . . , 8. Then, define D̂g to be an 8 x 8 matrix of derivatives for the sample

moments, where element lk in D̂g is

Dglk =
∂bl(mg)

∂mgk

for l = 1, . . . , 8 and k = 1, . . . , 8. The values for Dglk are given in Table 3.2.

Table 3.2 Elements Dglk in the derivative matrix D̂g, where

f1 = m12 − 0.25m34 and f2 = m11 − 0.25m33

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

l = 1 1 0 0 0 0 0 0 0

l = 2 0 1 0 0 0 0 0 0

l = 3 0 0 −f1
f22

1
f2

0 f1
4f22

−1
4f2

0

l = 4 0 0 1 0 0 -0.25 0 0

l = 5 0 0 m34
2f1

−m34f2
2f21

0 −m34
8f1

2f1f2+0.5m34f2
4f21

0

l = 6 0 0 −m34
2f1

m34f2
2f21

0 0.5 + m34
8f1

−2f1f2+0.5m34f2
4f21

0

l = 7 0 0 m34f1
2f22

−m34
2f2

0 −m34f1
8f22

−m12+0.5m34
2f2

0.5

l = 8 0 0
f21
f22

−2f1
f2

1
−f21
4f22

f1
2f2

-0.25

The variance of mg can be estimated using a Horvitz-Thompson variance to account for

the sample design. The Horvitz-Thompson variance estimator is

V̂ {mg} =

ng∑
i=1

ng∑
k=1

π−1ik (πik − πiπk)wgisgiwgks′gk,

where πi is the first order inclusion probability of individual i into the sample, πik is the second

order inclusion probability of individuals i and k into the sample, wgi is the survey weight for
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individual i in group g, and

sgi =



x̄gi.

ȳgi.

(x̄gi. −m1g)
2

(x̄gi. −m1g)(ȳgi. −m2g)

(ȳgi. −m2g)
2

(xgi1 − xgi2)2

(xgi1 − xgi2)(ygi1 − ygi2)

(ygi1 − ygi2)2



(3.19)

is the vector of summary statistics for individual i.

3.2.3 Population-Level Model

In the previous section we developed estimators which can be used to estimate the group-

level model parameters, including the group mean (µg) and variance (σ2tg) of daily EE in

the normal scale. Although it is of interest to estimate separate parameters for each of the

G groups, it is possible that the group-level parameters can be modeled across the groups to

form a population-level model with a reduced number of parameters. In this section, we outline

a procedure for developing a population-level model from the group-level model parameters.

First we give the general form of the model and an estimator for the model parameter vector.

Then we illustrate how the model can be formulated.

The population-level model is defined by a set of functions that model the group-level

parameters in θg given by (3.10) as functions of a new set of parameters defined for the

population. The set of functions and population-level model parameters are formulated based

on an analysis of the group-level parameter estimates. We illustrate how one can formulate

the model later in this section. The general form of the population-level model is

y = Zλ+ e. (3.20)

In the model,

y = (θ̂′1, . . . , θ̂
′
G)′
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is the 8G-dimensional vector of the estimated group-level model parameters, where θ̂g is given

by (3.16) for group g, g = 1, . . . , G. λ is the q-dimensional vector of parameters for model

(3.20), where q < 8G so that the total number of parameters from the group-level models is

smaller for the population-level model. Z is a (8G x q) design matrix for the model representing

coefficients that define the set of functions that relate the 8G group-level estimated parameters

to linear functions of the q population-level parameters. The variance of the vector of error

terms, e ∼ (0,V ), is estimated by

V̂ = blockdiag(V̂ {θ̂1}, . . . , V̂ {θ̂G}), (3.21)

where V̂ {θ̂g} is given by (3.17) for g = 1, . . . , G. The estimated variance (3.21) is appropriate

under the assumption that the EE measurements are uncorrelated across groups. With an

estimated variance V̂ , the population-level model can be estimated using estimated generalized

least squares (EGLS). The EGLS estimator of λ is

λ̂ = (Z ′V̂ −1Z)−1Z ′V̂ −1y, (3.22)

and an estimated variance of the estimator is

V̂ {λ̂} = (Z ′V̂ −1Z)−1. (3.23)

We illustrate how model (3.20) can be formulated by considering a simple reduced version

of (3.20) for the group-level model parameters µg and σ2tg. Suppose that the estimates of σ2tg

are similar across all groups defined by age. One may decide to use a common σ2t in the

population-level model by defining the function

σ2tg = σ2t , (3.24)

where σ2t represents the mean daily EE variance in the normal scale for the population. Also

suppose that the µg are linearly related to the mean age of age group. One can express the

relationship by

µg = µ0 + θAg, (3.25)
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where µ0 is a baseline parameter for the mean daily EE in the population, Ag is the mean

age in age group g, and θ represents the linear relationship in µg in relation to the mean age

in a group. Focusing only on the daily EE mean and variance, the population-level model

representing (3.24) and (3.25) is given as

µ̂1

σ̂2t1

µ̂2

σ̂2t2
...

µ̂G

σ̂2tG



=



1 A1 0

0 0 1

1 A2 0

0 0 1

...
...

...

1 AG 0

0 0 1




µ0

θ

σ2t

+ e, (3.26)

where µ̂g is the estimated value of µg and σ̂2tg is the estimated value of σ2tg from the group-

level model for g = 1, . . . , G. In practice, one would incorporate the other group-level model

parameters in the population-level model by defining functions for the parameters, similar to

the way in which the functions (3.24) and (3.25) were defined for µg and σ2tg. In Section 3.3

we define a more complete population-level model for the group-level model parameters using

preliminary data from PAMS.

After an initial fitting, the population-level model may be re-formulated. For example, if

the parameter θ in (3.26) is non-significant in the fitted population-level model, the θAg term

may be dropped from the model. Alternatively, a new function relating µg and group mean

age (Ag) could be considered in the population-level model.

Using the final population-level model, we estimate model parameters for each group. In

the simple population-level model given by (3.24) and (3.25), the estimated mean of daily EE

in the normal scale for group g is µ̂ + θ̂Ag and the estimated variance of mean daily EE in

the normal scale for group g is σ̂2t , where µ̂, θ̂, and σ̂2t are estimated from model (3.26) and

Ag is the group mean of age for group g. Let µ̂g and σ̂2tg denote the estimated mean daily EE

and estimated variance of daily EE in the normal scale for group g, g = 1, . . . , G, from the

population-level model. The estimated distribution of mean daily EE in the normal scale for
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group g is then N(µ̂g, σ̂
2
tg). Estimates of other model parameters can also be obtained using

the population-level model, including estimates of the slope parameters relating actual daily

EE to self-reported EE (β̂1g), estimates of the group means of self-reported EE (µ̂yg), and

estimates of the variance components that account for day-to-day variation in daily EE (σ̂2dg),

measurement error variation in the reference instrument (σ̂2ug) and self-report instrument (σ̂2eg),

and random variation due to self-reporting (σ̂2rg).

3.2.4 Estimating Parameters of Usual Daily EE in the Original Scale

Researchers are often interested in estimating parameters of usual daily EE in the original

scale for subpopulations. In the final step of our method, we develop a procedure for generating

estimated distributions of usual daily EE in the original scale for each group and describe how

to estimate some parameters of usual daily EE using the estimated distributions. To estimate

distributions of usual daily EE, a set of values for each group are generated from the estimated

normal-scale distribution of mean daily EE. The conditional expectation of the original-scale

daily EE values conditional on the normal-scale daily EE values is estimated. This procedure

accounts for the potential bias in transforming an individual’s daily EE from the normal scale to

the original scale. A simple back-transformation of the mean daily EE values using the inverse

of the transformation used to approximate normality would give potentially biased values of

usual daily EE in the original scale because the mean of a nonlinearly transformed variable

is not equal to the transformed mean of the original-scale variable. The set of original scale

values given by the estimated conditional expectation are then used to estimate a distribution

of usual daily EE in the original scale for each group and to estimate usual daily EE parameters

in the original scale.

For group g, we first randomly generate a set of m = 100, 000 daily EE values, ẗg1, . . . , ẗgm

from the estimated N(µ̂g, σ̂
2
tg) distribution. Next, we transform the generated values to usual

daily EE values in the original scale. Given the measurement error model for daily EE, the

usual daily EE value for individual i in group g is

T̈gi = E{h−1(tgi + dgij + ugij)|tgi = ẗgi},
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where h(·) is the transformation from Section 3.2.1 taking the daily EE values into the normal

scale and h−1(tgi + dgij + ugij) represents the monitor daily EE value in the original scale.

When h(·) = log(·), the usual daily EE value is

T̈gi = E{exp(tgi + dgij + ugij)|tgi = ẗgi}

= exp(ẗgi)E{exp(dgij + ugij)|tgi = ẗgi}

= exp(ẗgi)exp[(1/2)(σ2dg + σ2ug)] (3.27)

since tgi, dgij , and ugij are assumed to be uncorrelated, and exp(dgij + ugij) has a lognormal

distribution with mean exp[(1/2)(σ2dg + σ2ug)] under the assumption that dgij ∼ N(0, σ2dg) and

ugij ∼ N(0, σ2ug). An estimate of T̈gi is given by substituting σ̂2dg and σ̂2ug for σ2dg and σ2ug,

respectively.

If h(·) is a function other than the log function used to achieve normality, the transformation

taking the normal-scale EE values into the original scale may be approximated using other

methods. For example, Dodd et al. (2006) consider the Taylor expansion

T̈i = g(ẗi) + (1/2)g′′(ẗi)(σ
2
w)

for transforming normal-scale nutrient intake values into the original scale, where g(·) is the

inverse of a power transformation or a Box-Cox transformation with second derivative g′′(·), ẗi

is a normal-scale nutrient intake value, and σ2w is the within-individual variance of the nutrient

intake values in the normal scale. Nusser et al. (1996) give a procedure for taking usual intake

values from the normal scale into the original scale when a semiparametric transformation is

initially used to achieve normality. These procedures are reviewed in more detail in Section

1.4.4 of Chapter 1.

The set of usual daily EE values in the original scale, T̈g1, . . . , T̈gm, can be used to estimate

usual daily EE parameters in the original scale for each group. For example, the estimated

mean and variance of usual daily EE in the original scale for group g are

T̄g. = m−1
m∑
i=1

T̈gi
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and

S2
Tg = (m− 1)−1

m∑
i=1

(T̈gi − T̄g.)2,

respectively. The original scale values can also be used to estimate the proportion of individuals

in the group above or below some EE threshold value. For example, the estimated proportion

of individuals below an EE value of Tval is

p̂Tval = m−1
m∑
i=1

I(T̈gi < Tval), (3.28)

where I(T̈gi < Tval) is 1 if T̈gi < Tval and is 0 otherwise. When the transformation to normality

is a log transformation, it is not necessary to use the generated values, T̈g1, . . . , T̈gm, to estimate

these parameters in the original scale because the distribution generating these values is a

lognormal distribution multiplied by a constant, as given by (3.27). The distribution can be

used to directly estimate the mean, variance, and quantiles.

Estimated variances of the estimated usual daily EE parameters can be obtained using

delete-1 jackknife variance estimation (Section 4.2 of Fuller 2009). A jackknife variance esti-

mator is given in Appendix C for the population-level model parameter vector λ for a stratified

design. The jackknife procedure in Appendix C can be extended to estimate the variance of

original-scale usual daily EE parameters. Using the replicate estimates of λ given in Appendix

C, we compute replicate sets of m = 100, 000 original-scale usual daily EE values using the

procedure defined above and compute replicate estimates of the usual daily EE parameter of

interest. For illustration, let T̄g. be the estimated mean of usual daily EE in group g and let

T̄
(hi)
g. be the hith replicate estimate of T̄g. for individual i in stratum h. The estimated jackknife

variance of T̄g. is

V̂ {T̄g.} =
H∑
h=1

N−1h (Nh − nh)n−1h (nh − 1)

nh∑
i=1

(T̄ (hi)
g. − T̄g.)2,

where nh is the number of sampled individuals in stratum h and Nh is the total number

of individuals in stratum h. The jackknife variance estimator is not always appropriate for

nonsmooth functions such as sample quantiles (Section 4.2 of Fuller 2009). In our analyses,

sample quantiles such as p̂Tval given in (3.28) are computed using the T̈gi values to approximate
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a distribution where quantiles are smooth functions of the estimated parameters of model

(3.20).

3.3 Application to PAMS Data

In this section, we use the method described in Section 3.2 to estimate usual daily EE

parameters using preliminary EE data from a sample of 171 females from the Physical Activity

Measurement Survey (PAMS). In Section 3.3.1, we describe the PAMS survey design. In

Section 3.3.2, we present the daily EE data for the sample of 171 females. In Section 3.3.3,

we use the methodology from Section 3.2 to estimate usual daily EE parameters for four age

groups from the female sample.

3.3.1 Survey Design

The Physical Activity Measurement Survey (PAMS) is a survey conducted in four Iowa

counties (Black Hawk, Dallas, Marshall, and Polk) starting in Fall of 2009. A multi-stage

stratified probability design is used to select individuals from the counties. There are 2 strata

per county, for a total of 8 strata. In each county, one stratum is a “high minority” defined

by Census tracts that have relatively high percentages of minorities and the other stratum

is a “low minority” stratum defined by Census tracts that have relatively low percentages

of minorities. The “high minority” strata are oversampled to achieve a higher percentage of

minorities in the sample. Households in each stratum are systematically selected from a white

pages listing of telephone numbers. Every three months (quarter of a year), a new household

sample is selected. The preliminary data we use in our analyses are from the first quarter of

an eight quarter sample. We refer to this sample as the preliminary sample in the remainder

of the presentation.

A screening interview is used to randomly select 1 eligible adult in each household to

participate in the survey. To be eligible, the adult has to be between the ages of 21 and 70,

capable of physical activity engagement, and competent to be interviewed. After agreeing to

participate in the study, each respondent in the sample provides EE data from a SenseWear
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armband monitor and a 24-hour physical activity recall (24PAR) on two measurement days. To

be considered independent, the measurement days are randomly assigned approximately two

to three weeks apart. On the assigned measurement days, the respondent wears the armband

monitor for the full 24 hours of the day, except for water activities such as swimming and

showering. The day following a measurement day, the respondent is contacted to complete a

24PAR by telephone. During the 24PAR, the respondent reports on the activities he or she

engaged in during the measurement day.

A survey weight is computed for each individual in the sample. The base weight for

individual i from household k in stratum h is

whki =
Nh

nh
nhk, (3.29)

where Nh is the total number of households listed for stratum h, nh is the number of households

selected from stratum h, and nhk is the number of eligible adults in household k in stratum

h. For the preliminary sample of females, the base weights are adjusted for nonresponse by

stratum, and then post-stratified to match the 2000 U.S. Census totals for 20 - 69 year-olds by

county and gender. The final weight for female i in the sample from household k in stratum h

is

wpshki =

(
Nhnhk
nR,h

)
Nf
h∑nh

k=1
Nhnhk
nR,h

,

where Nf
h is the 2000 U.S. Census total for adult females age 20 - 69 in stratum h and nR,h is

the number of respondent households in stratum h, with nR,h ≤ nh. Percentiles for the final

survey weights for females in the preliminary PAMS sample are given in Table 3.3. The sample

sizes and population control totals for each of the strata are given in Table C.2 in Appendix

C.

Table 3.3 Percentiles for PAMS survey weights for the preliminary female

sample

Percentile 0 10 25 50 75 90 100

Survey Weight 113 210 271 527 1053 2107 3838
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Measurements of daily EE in kilocalories per day (kcal/d) are computed from the monitor

and the 24PAR for each respondent on each measurement day. The monitors contain internal

algorithms that estimate daily EE based on the activity data that are recorded and the re-

spondent’s height and weight. The activities reported using the 24PAR are assigned metabolic

equivalent (MET) intensity levels using a modified version of the Compendium of Physical

Activities (Ainsworth et al. 2000; Ainsworth et al. 1993). The activities are converted into an

estimate of daily EE using the conversion equation

1 MET = 0.0175 kcal/kg/min.

To illustrate the use of the equation, suppose that a respondent weighing 70 kg reports engaging

in an activity at a MET level of 4 for 10 minutes. The EE associated with this activity is

estimated to be 4 x 0.0175 x 70 x 10 = 49 kcals.

3.3.2 Female Daily EE

For our analyses, we consider data from females in the preliminary PAMS sample, who

were measured for daily EE during October 2009 to December 2009. One hundred and seventy

one females were measured for daily EE from the monitor and 24PAR on two measurement

days. Each female in this sample wore the monitor for at least 85% of the day and reported

activity for at least 85% of the day for each measurement day. Over 90% of the females (154

out of 171) in this sample wore the monitor for more than 95% of the day and reported on

activity for 95% of the day. Activity that occurred during time unaccounted for by the monitor

or recall was estimated to be at the individual’s resting rate of 1 MET or 0.0175 kcal/kg/min.

Unweighted demographic characteristics of the sample are given in Table 3.4. The median

age in the sample is 53 and about half of the females in the sample are between age 40 and 60.

Only a small portion of the sample is composed of Hispanics and blacks. Just under 40% of

the females in the sample have college degrees and just under 20% of the females in the sample

are self-identified smokers.

In Figure 3.1, we give side-by-side boxplots that compare the distributions of the monitor

and 24PAR EE data in the sample. Both distributions are skewed to the right, but the



80

Table 3.4 Demographic characteristics of the female PAMS sample

Median (IQR) Age 53 (18)

Age Range 23-70

Count (%) of Hispanics 3 (1.8)

Count (%) of blacks 16 (9.4)

Count (%) of College Graduates 66 (38.6)

Count (%) of Smokers 31 (18.1)

skewness is more extreme for the 24PAR data. In Figure 3.1 we also present a scatter plot of

the individual means of daily EE from the 24PAR versus monitor EE. The plot suggests that

24PAR EE is over-estimated in relation to monitor EE.

Figure 3.1 Boxplots of daily EE from the monitors and 24PARs and scatter

plot of individual means of daily EE from the monitors and

24PARs (dashed line is the identity line)

3.3.3 Methodology for the PAMS Sample

In this section, we use the methodology from Section 3.2 to estimate usual daily EE param-

eters from the preliminary female PAMS sample. For simplicity, we consider an unweighted

analyses in our presentation because the unweighted and survey-weighted results were shown

to be similar based on the test in Appendix C. The results from fitting the population-level
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model using the survey weights are given in Appendix C. As in Section 3.2, let Xij denote the

original scale EE from the monitor and let Yij denote the original scale EE from the 24PAR

for individual i on day j.

3.3.3.1 Transformation to Normality and Check for Nuisance Effects

First, we transform the daily EE data to approximate normality. Because log transforma-

tions are often used for analyses in physical activity research (Ferrari et al. 2007), we consider

the log transformation to approximate normality for the PAMS EE data. Let xij = log(Xij) be

daily EE from the monitor and let yij = log(Yij) be daily EE from the 24PAR in the log scale

for individual i on day j. Shapiro-Wilk test statistics are computed for the set of xij values

and set of yij values from the sample using SAS statistical software (SAS Institute 2009). The

p-values for the test statistics are 0.25 and 0.21 for the set of xij and yij values, respectively.

Therefore, the log transformed values are used for model fitting.

Next, we check for nuisance effects in the log-transformed daily EE data by fitting linear

regression models containing covariates for day-of-week effect, time-in-sample effect, and de-

mographic variables. We include variables for day-of-week effect and time-in-sample effect in

the models because we suspect that an individual may have different EE values depending on

the day of the week (e.g., weekday vs. weekend) and depending on whether the value is the

first or second observation for a respondent (e.g., replicate 1 vs. 2). We include demographic

variables for age, race/ethnicity, education, and smoking status in the models because we sus-

pect that EE levels may vary by these factors. In preliminary fits we also included variables

for town size and number of adults in the household, but these variables were non-significant

and are not considered in this presentation. The model variable for day-of-week effect is an

indicator variable, which takes a value of 1 if day j is Saturday or Sunday and takes a value of

0 otherwise. The model variable for time-in-sample effect is an indicator variable, which takes

a value of 1 if day j is the first measurement day of the individual and a value of 0 otherwise.

The model variable for age is the actual age of the individual. The variable age squared is

also included in the model to account for a quadratic relationship between daily EE and age



82

observed in exploratory analyses. The model variables for the other demographic variables are

indicator variables for Hispanic, black, college graduate, and smoker.

The models are fit using the weighted least squares estimators given by (3.3) and (3.4) in

Section 3.2.1, where the weights wi are all set to 1. Estimated variances for the regression

coefficients are computed using the Taylor variances given by (3.5) and (3.6) in Section 3.2.1.

Test statistics are computed using (3.7) and p-values are computed for each of the test statistics.

The p-values are given in Table 3.5. The nuisance effects (day of week and time in sample)

are not significant in either of the model fits (p-values greater than 0.05), and, given these

results, we do not adjust the PAMS EE data for nuisance effects. The nuisance effects are also

non-significant when the models are fit using the survey weights (results not shown).

The results in Table 3.5 suggest that age squared is a significant indicator of daily EE from

the monitor and there is suggestive evidence of a difference for blacks vs. non-blacks in the

monitor data. Being Hispanic is a significant indicator of daily EE from the 24PAR at the 0.05

level. In this presentation, we consider age groups when conducting our group-level analyses,

but not race/ethnicity groups. There are only 3 Hispanics and 16 blacks in the preliminary

female sample. As more data become available, we will consider groups for race/ethnicity in

our analyses.

Table 3.5 P-values for the linear regression models fit to the log-trans-

formed data

Monitor Model (xij) 24PAR Model (yij)

Variable P-value P-value

Intercept < 0.01 < 0.01

Day of Week 0.87 0.69

Time in Sample 0.83 0.54

Age 0.12 0.54

Age Squared 0.03 0.46

Hispanic 0.18 0.01

Black 0.07 0.12

College Graduate 0.61 0.23

Smoker 0.62 0.88
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3.3.3.2 Age Groups

In preliminary analyses, daily EE measurements from the monitor were shown to vary

according to age. Based on these results, we define age groups for the group-level measurement

error models. To form groups, we divide the sample into four age groups of approximately

equal size (Table 3.6). For the remainder of the presentation, we will denote the age groups as

groups 1 - 4, where 1 is the youngest age group and 4 is the oldest age group.

Table 3.6 Age groups

Age Group g Age Range Average Age Sample Size

1 23 - 42 34.3 44

2 43 - 52 48.6 40

3 53 - 59 55.6 43

4 60 - 70 64.6 44

3.3.3.3 Group-Level Model

Once the groups have been determined, the next step in our method is to estimate the

group-level model parameters. The measurement error model given by equations (3.8) and

(3.9) is fit to each of the four age groups using method of moments as described in Section

3.2.3. The method of moments estimators are given in Table 3.1 in Section 3.2.2. Standard

errors for the parameter estimates are computed using the Taylor series variance estimator

given by (3.17), V̂ {θ̂g} = DgV̂ {mg}D′g. Due to the small number of individuals in each of

the 4 age groups, we ignore the stratified design in computing the estimated variance of the

sample moments, V̂ {mg}, and instead use the estimated variance for a simple random sample

(ignoring the finite population correction) defined by

V̂ {mg} = n−1g (ng − 1)−1
ng∑
i=1

(sgi − s̄g.)(sgi − s̄g.)′,

where sgi is given by (3.19) and s̄g. is the mean of the sgi in group g. The parameter estimates

and standard errors from the measurement error models for each group are given in Tables 3.7

and 3.8.
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Table 3.7 contains the estimated group-level measurement error model parameters for the

mean of daily EE (µg), the mean of reported daily EE (µyg) and the slope relating mean daily

EE to reported daily EE (β1g). The estimated means of daily EE decrease by age group,

suggesting that older females tend to have lower levels of mean daily EE compared to younger

females. The estimated slope parameters also decrease by age group, suggesting that the

relationship between average levels of mean daily EE and reported daily EE may be a function

of age. The estimated means of reported daily EE are larger than the estimated means of

daily EE, suggesting over-reporting in daily EE for all age groups. Unlike the daily EE means,

the reported daily EE means do not show much of a trend across age groups. Given these

results, we model the decreasing trends in the estimated daily EE means and the estimated

slope parameters in the population-level model and estimate a common mean for reported

daily EE in the next section.

Table 3.7 Estimated measurement error model parameters (and standard

errors) for the mean of daily EE (µg), the mean of reported daily

EE (µyg), and the slope for population-level reporting bias (β1g)

Parameter Group 1 Group 2 Group 3 Group 4

µg 7.8421 (.0240) 7.8104 (.0230) 7.7595 (.0283) 7.7182 (.0241)

µyg 8.0616 (.0435) 8.0300 (.0326) 8.0656 (.0398) 8.0318 (.0315)

β1g 1.2970 (.2103) 0.9226 (.1984) 0.8433 (.2081) 0.6982 (.1145)

Table 3.8 contains the estimated group-level measurement error model parameters for the

variance components from models (3.8) and (3.9). No systematic trends in the components

are discernible. In preliminary analysis of possible models for the variance components, the

largest differences between age groups were non-significant (results not shown). As more data

become available, evidence of relationships or differences in the variance components across

age groups may surface. For this analyses, we assume constant variance components across

age groups in the population-level model (next section).
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Table 3.8 Estimated variance components (and standard errors) from the

measurement error model for mean daily EE (σ2tg), within-indi-

vidual EE variation in daily EE (σ2dg), measurement error vari-

ation from the monitor (σ2ug) and the 24PAR (σ2eg), and report-

ing-bias variation from the recall (σ2rg)

Parameter Group 1 Group 2 Group 3 Group 4

σ2tg 0.0211 (.0059) 0.0170 (.0048) 0.0296 (.0077) 0.0235 (.0062)

σ2dg 0.0089 (.0027) 0.0044 (.0022) 0.0025 (.0015) 0.0065 (.0028)

σ2ug 0.0056 (.0028) 0.0047 (.0027) 0.0067 (.0028) 0.0044 (.0034)

σ2eg 0.0042 (.0041) 0.0066 (.0022) 0.0064 (.0024) 0.0079 (.0028)

σ2rg 0.0363 (.0088) 0.0221 (.0049) 0.0416 (.0095) 0.0259 (.0085)

3.3.3.4 Population-Level Model

Given the results from the fitted group-level models (Table 3.7 and 3.8), we develop a

population-level model for daily EE. We model the daily EE mean for age group g as

µg = µ0 + θAg, (3.30)

where µ0 is a baseline parameter for the daily EE mean in the population, Ag is the mean age

of age group g minus the overall mean age for the sample (see Table 3.6), and θ is a parameter

to estimate the linear trend in the daily EE mean. We model the bias slope parameters as a

function of mean age,

β1g = β1 + β3Ag, (3.31)

where β1 is the baseline slope for the population and β3 accounts for the linear trend in the

slopes across age groups. We model the group means of reported EE as

µyg = µy + β1g(µg − µ0),

where µy is the overall mean of reported EE and β1g(µg − µ0) accounts for the deviation in

the group-level reported EE mean from the overall mean. Given models (3.30) and (3.31), the

model for the mean of reported EE can be written as

µyg = µy + (β1 + β3Ag)θAg. (3.32)
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The group-level variance components are related to population-level variance components

through the system of equations

σ2tg = σ2t

σ2dg = σ2d

σ2ug = σ2u

σ2eg = σ2e

σ2rg = σ2r , (3.33)

for g = 1, . . . , 4.

The population-level model is given by (3.30) - (3.33), where the parameters on the left

side of the equations are replaced by their respective estimates from the estimated parameter

vector

θ̂g = (µ̂g, µ̂yg, β̂1g, σ̂
2
tg, σ̂

2
dg, σ̂

2
ug, σ̂

2
eg, σ̂

2
rg)
′,

The vector of population-level model parameters from (3.30) - (3.33) is

λ = (µ0, µy, θ, β1, β3, σ
2
t , σ

2
d, σ

2
u, σ

2
e , σ

2
r )
′.

The model is nonlinear since (3.32) is a nonlinear function of population-level model parame-

ters. We fit the model using nonlinear EGLS. When the population-level model is linear, the

model parameters are estimated using the approach from Section 3.2.3.

The parameter estimates and standard errors from the fitted model are given in Table

3.9. Each of the model parameters is significant at the 0.05 level. There is evidence of a

linear trend across age groups in the daily EE mean (represented by θ), and evidence of a

linear trend across age groups in the slope parameter (represented by β3). The estimated

mean of daily EE (µ0) appears to be smaller than the estimated mean of reported daily EE

(µy), indicating over-reporting bias in daily EE from the 24PAR. The estimated variance for

individual reporting effects (σ2r ) is large relative to the other estimated variances components.

The estimated inter-individual variance in usual daily EE (σ2t ) is about 4 times larger than the

estimated within-individual variance in daily EE (σ2d).
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Table 3.9 Parameter estimates (standard errors) for the population-level

model

Parameter Est (SE)

µ0 7.8004 (.0096)

µy 8.0544 (.0141)

100θ -0.3767 (.0977)

β1 0.9531 (.0705)

100β3 -1.6351 (.4515)

100σ2t 2.1556 (.2492)

100σ2d 0.4969 (.0898)

100σ2u 0.5011 (.1126)

100σ2e 0.6558 (.1172)

100σ2r 2.1072 (.2954)

The parameter estimates from the population-model can be used to estimate normal-scale

mean daily EE values in each of the 4 age groups. The estimated means are computed from

equation (3.30) as µ̂g = µ̂0 + θ̂Ag, where µ̂0 and θ̂ are given in Table 3.9. Standard errors for

the estimated means are given by

se(µ̂g) =
√
c′gV̂ {λ̂}cg,

where

c′g = (1, 0, Ag, 0, 0, 0, 0, 0, 0, 0)

and V̂ {λ̂} is the estimated variance matrix for the population-level model. The estimates and

standard errors are given in Table 3.10. The parameter estimates from the population-level

model can also be used to estimate the slope parameters for each of the age groups based on

equation (3.31). The estimates (and standard errors) for the slope parameters are given in

Table 3.10. Note that the estimated means and slope parameters in Table 3.10 are similar to

the estimated means and slope parameters in Table 3.7 for the fitted group-level models.

Figure 3.2 illustrates the relationships between mean daily EE and reported daily EE in

the youngest and oldest age groups. In the youngest age group (group 1), females with higher

levels of usual daily EE tend to have a greater discrepancy between their reported and mean
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Table 3.10 Parameter estimates (standard errors) for the daily EE group

means (µg) and slope parameters (β1g) based on the fitted pop-

ulation-level model

Parameter Est (SE)

µ1 7.8625 (.0187)

µ2 7.8087 (.0098)

µ3 7.7824 (.0108)

µ4 7.7484 (.0167)

β11 1.2228 (.1167)

β12 0.9889 (.0740)

β13 0.8748 (.0673)

β14 0.7275 (.0791)

daily EE, while in the oldest age group (group 4), females with higher levels of mean daily EE

tend to have a smaller discrepancy between their reported and mean daily EE.

Figure 3.2 Estimated lines relating mean daily EE and reported daily EE

for age groups 1 and 4 (points are the individual means of mea-

sured EE in the log scale; dashed lines are the estimated lines

and dotted lines are the identity lines)

3.3.3.5 Estimated Usual Daily EE Parameters in the Original Scale

As a final step in our analyses, we present plots with estimated distributions of usual daily

EE in the original scale and give estimated parameters of usual daily EE in the original scale.
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Given the estimated daily EE means, µ̂1, . . . , µ̂4, in Table 3.10 and the estimated mean daily

EE variance, σ̂2t , in Table 3.9, the estimated distributions of mean daily EE in the normal

scale are N(7.8625, 0.0216), N(7.8087, 0.0216), N(7.7824, 0.0216), and N(7.7484, 0.0216) for

age groups 1 - 4, respectively. The estimated distributions of usual daily EE are computed

using the procedure given in Section 3.2.4. For each group, m = 100, 000 values, ẗg1, . . . , ẗgm,

are generated from the estimated normal distribution and each value is transformed into the

original scale using equation (3.27), where estimates of σ2dg and σ2ug, σ̂
2
d = 0.0050 and σ̂2u =

0.0050, respectively, are obtained from the fitted population-level model. Figure 3.3 gives the

estimated density functions for each of the estimated age group distributions of usual daily EE.

Density values for the plots are computed using the R function density(), which computes an

empirical distribution function over a grid of points and uses a linear approximation to evaluate

the densities at the specified points. There is a slight right skew in each of the density functions.

The distributions shift to the left as age group goes from 1 to 4, which is a consequence of the

estimated trend in the usual daily EE means across the age groups.

In Figure 3.4 we give the estimated density of usual daily EE in kcal/d for age group 1 (age

< 43), along with the estimated densities for the individual means of daily EE from the monitor

and the 24PAR. The estimated density function based on the monitor means has slightly more

dispersion than the estimated density of usual daily EE due to the measurement error variance

in the monitor model. The monitor density has the same mean as the usual daily EE density,

which is a result of the assumption that the monitor gives unbiased measurements of daily

EE. The estimated density from the 24PAR has a larger spread than either the usual daily EE

density or the monitor means density due to the excess variability in the 24PAR EE values.

The 24PAR density is also shifted to right relative to the two other density functions due to

the over-reporting bias in the 24PAR for age group 1.

Using the estimated distributions of usual daily EE in the original scale, we can estimate

usual daily EE parameters. The group-level parameters we consider are the mean of usual

daily EE in the original scale (T̄g.), the standard deviation of usual daily EE in the original

scale (STg), the proportion of individuals with less than 1750 kcal/d of usual daily EE (plow,g),
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Figure 3.3 Estimated densities of usual daily EE for age groups 1 - 4

and the proportion of individuals with more than 3250 kcal/d of usual daily EE (phigh,g). The

cutoff values of 1750 kcal/d and 3250 kcal/d were chosen for illustrative purposes and do not

necessarily have any significance from a public health perspective. The estimates are given in

Table 3.11 for each of the age groups. Standard errors of the estimates are computed using a

delete-1 jackknife, which is described in Section 3.2.4. For each individual i, a replicate set of

m = 100, 000 original-scale usual daily EE values is generated and estimates of T̄g., STg, plow,g,

and phigh,g are computed. Then standard errors are computed using the replicate jackknife

estimates. The means of usual daily EE in the original scale decline by age group. Similarly,

there is a decrease in standard deviations of usual daily EE in the original scale across age

group. The tail estimates of plow,g and phigh,g also reflect the decrease in usual daily EE across

age group.



91

Figure 3.4 Estimated densities of usual daily EE, individual means of daily

monitor EE, and individual means of daily 24PAR EE for age

group 1 (age < 43)

3.4 Discussion

In this chapter, we have presented a method for estimating usual daily EE parameters,

where daily EE measurements are adjusted for measurement error and nuisance effects using

measurement error models. Our method is an extension of existing methods proposed in the

literature for estimating usual physical activity parameters (Ferrari et al. 2007) and usual

intake parameters (Nusser et al. 1996; Kipnis et al. 2003). A useful feature of our analysis

is estimation of usual daily EE parameters for groups of the population. To implement our

method, multiple concurrent measurements of daily EE must be available from an unbiased

reference instrument, such as a multi-sensor monitoring device, and a self-report instrument,

such as a 24-hour recall. The reference instrument is assumed to give unbiased measurements
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Table 3.11 Parameter estimates (standard errors) for the group mean of

usual daily EE in the original scale (T̄g.), the group standard

deviation of usual daily EE in the original scale (STg), the group

proportion of individuals with less than 1750 kcal/d of usual

daily EE (plow,g), and the group proportion of individuals with

more than 3250 kcal/d of usual daily EE (phigh,g)

T̄g. STg 100plow,g 100phigh,g
Age Group Est (SE) Est (SE) Est (SE) Est (SE)

1 2640 (68) 391 (46) 0.31 (0.32) 6.85 (3.51)

2 2503 (41) 368 (41) 0.87 (0.66) 3.16 (1.75)

3 2435 (45) 360 (41) 1.46 (0.99) 2.11 (1.34)

4 2355 (62) 348 (37) 2.51 (1.76) 1.20 (0.88)

of usual daily EE for model identification purposes.

A number of interesting points were identified by the analysis of the PAMS data in Section

3.3. An important amount of the variation in daily EE measured from the 24PAR is due to

individual-level reporting biases. Almost half of the variation in the 24PAR EE data is due

to individual-level reporting bias given the results from Table 3.9. Hence, individuals tend to

misreport on their daily EE from the previous day, which could be due to cognitive limitations

associated with recalling activity from the past (Matthews 2002). Researchers should use

caution when making inferences on self-reported EE data because of the potential for bias and

excess variation in the data.

The results from the female PAMS sample also suggest that the within-individual variation

in daily EE is small relative to the inter-individual variation in usual daily EE. In Table

3.9, the estimated usual daily EE variance in the normal scale (100σ2t ) is about 2 and the

estimated within-individual variance of daily EE in the normal scale (100σ2d) is about 0.5.

Hence, the inter-individual variation in usual daily EE is about four times larger than the

within-individual variation in daily EE. This result is contrary to results from the dietary

intake literature, which indicate that there is much more within-individual variation in dietary

intake than there is inter-individual variation (Nusser et al. 1996; Carriquiry 2003).

In our analyses, there was evidence of a decrease in mean usual daily EE as age increases.

The youngest age group (age 21 - 42) had the largest estimated mean of usual daily EE, while
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the oldest age group (age 60 - 70) had the smallest estimated mean of usual daily EE. Similar

results are given in Ferrari et al. (2007), which show lower levels of estimated EE in older age

groups relative to younger age groups. The estimated slope parameters, which compare usual

daily EE to reported daily EE in the groups, also decreased with age. The more active females

in the youngest age group tend to have larger discrepancies between their usual daily EE and

reported daily EE, while the more active females in the oldest age group tend to have smaller

discrepancies between their usual daily EE and reported daily EE (Figure 3.2).

A long-term goal of our research is to use estimated usual daily EE distributions to estimate

usual daily EE parameters in the original scale and to infer about EE behaviors of individuals

in the population. The analyses we have presented here offer an example of what might be

done to estimate usual daily EE parameters in the original scale (Table 3.11). Future work

should involve a more thorough development of the methodology we have considered in this

paper using EE data from a larger sample of the population.
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APPENDIX A CONSISTENCY OF AN EGLS REGRESSION

ESTIMATOR FOR A STRATIFIED CLUSTER DESIGN

Theorem 1 below contains conditions for the consistency of an estimated generalized least

squares (EGLS) regression estimator for a stratified two-stage cluster sampling design. The

conditions are developed to account for estimation of a regression estimator using data from

NHANES, which is considered in Chapter 2.

For the NHANES sample design, clusters or primary sampling units (hereafter referred to

as clusters) are selected from geographic strata that are subdivisions of the United States,

and individuals are then selected from within the clusters through a multi-stage selection

process. To account for this design in the theorem, we assume that stratified finite populations

are realizations from a stratified infinite superpopulation with a fixed number of strata and

that clusters in the finite population strata are independent realizations from the infinite

superpopulation strata. In multi-stage sample designs like the NHANES design, regression

error terms are often correlated within clusters. In the theorem, we allow for the error terms

from model (A.2) to be correlated within clusters.

In the proof of Theorem 1 we rely on Corollary 5.1.1.2 in Fuller (1976), which states that

Xn = Op(an)

for a sequence of random variables, {Xn}, and a sequence of numbers, {an}, that satisfy

E{(Xn − E{Xn})2} = O(a2n).

This corollary is a consequence of Chebyshev’s inequality.

Theorem 1
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Let {Fr} be a sequence of stratified populations each with H strata. Let the finite popu-

lation in stratum h of the rth stratified population be a realization of Nrh clusters from the

infinite superpopulation, where Nrh ≥ Nr−1,h and

Nr =
H∑
h=1

Nrh

is the total number of clusters in the rth finite population. Let Nr →∞ as r →∞ and

lim
r→∞

Nrh/Nr = ch, (A.1)

where 0 < ch ≤ 1 for all h. Let zrhij = (yrhij ,x
′
rhij)

′ be a (p + 1)-dimensional random

vector associated with element j, j = 1, . . . ,Mrhi, in cluster i, i = 1, . . . , Nrh, in stratum h,

h = 1, . . . ,H, of the rth population, where Mrhi is the total number of elements in cluster rhi

and Mrhi ≥ 2 for all r, h, and i. Let the vector of cluster totals

zrhi. =

Mrhi∑
j=1

zrhij ,

have absolute 4 + δ moments, for δ > 0, and be independent with mean µrh and covariance

matrix Σrh for all r, h and i. Let yrhij and xrhij in zrhij be related through the model

yrhij = x′rhijβ + erhij , (A.2)

where β is a p-dimensional vector of regression coefficients, erhij ∼ (0, vrhij) is independent of

xrh′i′j′ for all h, h′, i, i′, j, and j′, erhij is independent of erh′i′j′ when hi 6= h′i′, and

0 < Mv1 < vrhij < Mv2 <∞, (A.3)

for positive constants Mv1 and Mv2 and all r, h, i, and j.

Let a stratified simple random sample of clusters be selected from the rth finite population,

where nrh clusters are selected from stratum rh, nrh ≥ 2, nrh ≥ nr−1,h, and

nr =
H∑
h=1

nrh

is the total number of clusters in the sample. Let nr →∞ as r →∞,

lim
r→∞

nrh/nr = ch (A.4)
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for h = 1, . . . ,H, and

lim
r→∞

nr/Nr = f, (A.5)

where 0 < f ≤ 1. Also, let mrhi elements be selected from cluster rhi in the sample, where

mrhi is the smallest integer greater than or equal to grhiMrhi such that 0 < grhi ≤ 1 for all r,

h, and i.

Let qrhij = xrhijv
−1
rhijx

′
rhij and let

M̂rq = n−1r

H∑
h=1

nrh∑
i=1

mrhi∑
j=1

qrhij ,

Mrq,N = N−1r

H∑
h=1

Nrh∑
i=1

Mrhi∑
j=1

qrhij ,

and

Mq = E{Mrq,N}.

Similarly, let urhij = xrhijv
−1
rhijerhij and let

M̂ru = n−1r

H∑
h=1

nrh∑
i=1

mrhi∑
j=1

urhij ,

Mru,N = N−1r

H∑
h=1

Nrh∑
i=1

Mrhi∑
j=1

urhij ,

and

Mu = E{Mru,N}.

Let v̂rhij be an estimator of vrhij for element rhij, which satisfies

M̂rq̂ − M̂rq = Op(n
−1/2
r ) (A.6)

and

M̂rû − M̂ru = Op(n
−1/2
r ), (A.7)
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where

M̂rq̂ = n−1r

H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij ,

M̂rû = n−1r

H∑
h=1

nrh∑
i=1

mrhi∑
j=1

ûrhij ,

q̂rhij = xrhij v̂
−1
rhijx

′
rhij , and ûrhij = xrhij v̂

−1
rhijerhij . Let

β̂EGLS =

 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij

−1 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

xrhij v̂
−1
rhijyrhij . (A.8)

Then β̂EGLS − β = Op(n
−1/2
r ).

Proof

Since qrhij = xrhijv
−1
rhijx

′
rhij , by the assumption that xrhij in zrhij has finite 4+δ moments

and assumption (A.3), it follows that

qrhi. =

Mrhi∑
j=1

qrhij ,

has finite 2 + δ moments and that the qrhi. are independent and share a common covariance

matrix Σq,rh for all i in stratum rh. Let σq,rh,kl be the klth element of Σq,rh for k, l = 1, . . . , p.

Then, the klth element of V ar{Mrq,N −Mq} is

V ar{Mrq,N −Mq}kl = N−2r

H∑
h=1

Nrh∑
i=1

σq,rh,kl

= N−2r

H∑
h=1

Nrhσq,rh,kl

= N−1r

H∑
h=1

(Nrh/Nr)σq,rh,kl

= O(N−1r ),

for all k and l by assumption (A.1). By Corollary 5.1.1.2 in Fuller (1976), it follows that

Mrq,N −Mq = Op(N
−1/2
r ).
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Since urhij = xrhijv
−1
rhijerhij , by the model assumptions of (A.2) and by assumption (A.3),

similar arguments can be used to show that

Mru,N −Mu = Op(N
−1/2
r ).

Since qrhi. has finite 2 + δ moments and the qrhi. are independent with common covariance

matrix Σq,rh, it follows that the partial sum of qrhi.,

qm,rhi. =

mrhi∑
j=1

qrhij ,

has finite 2 + δ moments and the qm,rhi. are independent. Let

Mqm,rhi,kl = max{V ar{qm,rhi.}kl, V ar{qrhi.}kl, |Cov{qm,rhi., qrhi.}kl|},

where V ar{qm,rhi.}kl is the klth element of the variance of qm,rhi., V ar{qrhi.}kl is the klth

element of the variance of qrhi., and Cov{qm,rhi., qrhi.}kl is the klth element of the covariance

of qm,rhi. and qrhi.. Let

Mqm,rh,kl = max
i
{Mqm,rhi,kl}.

Then, the klth element of V ar{M̂rq −Mrq,N} is

V ar{M̂rq −Mrq,N}kl = n−2r

H∑
h=1

nrh∑
i=1

V ar{qm,rhi.}kl +N−2r

H∑
h=1

Nrh∑
i=1

V ar{qrhi.}kl

− 2n−1r N−1r

H∑
h=1

nrh∑
i=1

Cov{qm,rhi., qrhi.}kl

≤ n−2r

H∑
h=1

nrh∑
i=1

Mqm,rh,kl +N−2r

H∑
h=1

Nrh∑
i=1

Mqm,rh,kl

+ 2n−1r N−1r

H∑
h=1

nrh∑
i=1

Mqm,rh,kl

= n−1r

H∑
h=1

(nrh/nr)Mqm,rh,kl +Nr

H∑
h=1

(Nrh/Nr)Mqm,rh,kl

+ 2N−1r

H∑
h=1

(nrh/nr)Mqm,rh,kl

= O(n−1r ) +O(N−1r ) +O(N−1r )

= O(n−1r )
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by assumptions (A.1), (A.4), and (A.5). By Corollary 5.1.1.2 in Fuller (1976), it follows that

M̂rq −Mrq,N = Op(n
−1/2
r ).

By similar arguments,

M̂ru −Mru,N = Op(n
−1/2
r ).

It follows that,

M̂rq −Mq = M̂rq −Mrq,N +Mrq,N −Mq

= Op(n
−1/2
r ) +Op(N

−1/2
r )

= Op(n
−1/2
r )

and

M̂ru −Mu = M̂ru −Mru,N +Mru,N −Mu

= Op(n
−1/2
r ) +Op(N

−1/2
r )

= Op(n
−1/2
r ),

by assumption (A.5). Also,

M̂rq̂ −Mq = M̂rq̂ − M̂rq + M̂rq −Mq

= Op(n
−1/2
r ) +Op(n

−1/2
r )

= Op(n
−1/2
r ),

by assumption (A.6). By a Taylor expansion,

M̂−1
rq̂ = M−1

q + (M̂rq̂ −Mq)h
′(M∗

rq)

= M−1
q +Op(n

−1/2
r ),

where M∗
rq is on the line segment joining M̂rq̂ and Mq and h(M∗

rq) is the vector of derivatives

of M̂−1
rq̂ with respect to the elements in M̂rq̂ evaluated at M∗

rq. It follows that

M̂−1
rq̂ −M

−1
q = Op(n

−1/2
r ). (A.9)
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By the assumptions of model (A.2),

E{urhij} = E{xrhijv−1rhijerhij}

= 0

for all r, h, i, and j, and it follows that

Mu = 0,

since the urhi. are independent for all r, h, and i. Then,

M̂ru = Mu +Op(n
−1/2
r )

= Op(n
−1/2
r ),

and by assumption (A.7),

M̂rû = M̂ru +Op(n
−1/2
r )

= Op(n
−1/2
r ). (A.10)

Thus, for the EGLS estimator in (A.8),

β̂EGLS − β =

 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij

−1 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

xrhij v̂
−1
rhijyrhij − β

=

 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij

−1 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

xrhij v̂
−1
rhij(yrhij − x

′
rhijβ)

=

 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij

−1 H∑
h=1

nrh∑
i=1

mrhi∑
j=1

xrhij v̂
−1
rhijerhij

=

n−1r H∑
h=1

nrh∑
i=1

mrhi∑
j=1

q̂rhij

−1 n−1r H∑
h=1

nrh∑
i=1

mrhi∑
j=1

xrhij v̂
−1
rhijerhij

= M̂−1
rq̂ M̂rû

= Op(n
−1/2
r ),

by (A.9) and (A.10), and the proof is complete.

Comment
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For assumptions (A.6) and (A.7) to hold, a sufficient condition is that

v̂rhij = vrhij +Op(n
−1/2
r ). (A.11)

In practice, v̂rhij is derived by fitting model (A.2) using ordinary least squares and using the

squared residuals from the model fit to estimate the parameter vector η in the variance model

vrhij = v(xrhij ,η),

where v is a known, continuous function. For this procedure to satisfy (A.11), the estimator

of η must be consistent for η at most of order n
−1/2
r . See Lemma 5.7.1 of Fuller (1976).
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APPENDIX B REGRESSION ESTIMATION FOR STRATIFIED

CLUSTER DESIGN

In this appendix we present regression estimators, variances of the estimators, and a test

statistic for comparing the weighted and unweighted estimators for a regression model. The

regression model is presented in Chapter 2 for the NHANES stratified cluster design. We

consider the model set up from Theorem 1 in Appendix A. To reduce notational complex-

ity we ignore the index r representing the rth finite population generated from the infinite

superpopulation.

Consider the linear regression model (A.2),

yhij = x′hijβ + ehij , (B.1)

where β is a p-dimensional vector of unknown regression coefficients, yhij is average daily

accelerometer MVPA, xhij is a p-dimensional function of covariates, and ehij ∼ (0, vhij) with a

positive finite variance vhij for individual j, j = 1, . . . ,mhi, in PSU i, i = 1, . . . , nh, in stratum

h, h = 1, . . . ,H. Assume that ehij is independent of xh′i′j′ for all h, h′, i, i′, j, and j′, and

that ehij is independent of eh′i′j′ when hi 6= h′i′. The ordinary least squares (OLS) estimator

of β for (B.1) is

β̂OLS =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijx
′
hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijyhij , (B.2)

and the weighted least squares (WLS) estimator of β for (B.1) is

β̂WLS =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijwhijx
′
hij

−1 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijwhijyhij , (B.3)

where whij is the survey weight for individual j in PSU hi. To take into account the sample

design, the variances of (B.2) and (B.3) can be estimated using the Taylor linearization form
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available in SAS and STATA and given in Fuller (1984). The estimated Taylor linearization

variance of β̂OLS is

V̂ (β̂OLS) =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijx
′
hij

−1 ĜOLS

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijx
′
hij

−1 , (B.4)

where

ĜOLS =
n− 1

n− p

H∑
h=1

nh
nh − 1

nh∑
i=1

(rhi. − r̄h..)(rhi. − r̄h..)′,

rhij = xhij êOLS,hij , (B.5)

êOLS,hij = yhij − x′hijβ̂OLS ,

rhi. =

mhi∑
j=1

rhij ,

r̄h.. = n−1h

nh∑
i=1

rhi.,

n is the total number of elements in the sample, and p is the dimension of β. The factor

(n − 1)/(n − p) is a variance adjustment term used to reduce small sample bias (Hidiroglou,

Fuller, and Hickman 1980). The form of the estimated variance (B.4) is appropriate given the

model assumptions that the error terms are uncorrelated across PSUs and that the PSUs are

simple random samples from the strata. The estimated Taylor linearization variance of β̂WLS

is

V̂ (β̂WLS) =

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijwhijx
′
hij

−1 ĜWLS

 H∑
h=1

nh∑
i=1

mhi∑
j=1

xhijwhijx
′
hij

−1 ,
where

ĜWLS =
n− 1

n− p

H∑
h=1

nh
nh − 1

nh∑
i=1

(shi. − s̄h..)(shi. − s̄h..)′,

shij = xhijwhij êWLS,hij ,

êWLS,hij = yhij − x′hijβ̂WLS ,

shi. =

mhi∑
j=1

shij ,

and

s̄h.. = n−1h

nh∑
i=1

shi..
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Given regularity conditions, the WLS estimator is asymptotically unbiased for β, while the

OLS estimator can be biased for β if the model error terms ehij are correlated with the survey

weights whij (Fuller 2009, page 350-1). To test for the bias in the OLS estimator, one can test

for γ = 0 in the extended model

yhij = x′hijβ + w∗hijx
′
hijγ + ahij ,

where ahij is equal to ehij if γ = 0,

w∗hij =
whij − w̄

w̄
,

and w̄ is the mean of the survey weights (Fuller 2009, page 352). Define zhij = (x′hij , w
∗
hijx

′
hij)
′

and θ = (β′,γ ′)′. The OLS estimator of θ, θ̂OLS , is given by (B.2), with zhij replacing xhij .

The estimated Taylor linearization variance of θ̂OLS , V̂ (θ̂OLS), is given by (B.4), with zhij

replacing xhij and zhij âOLS,hij replacing rhij in (B.5), where âOLS,hij = yhij − z′hij θ̂OLS .

The test statistic for γ = 0 is

F (p,m) = p−1θ̂′2V̂ (θ̂OLS)−122 θ̂2,

where θ̂2 is the lower p elements of θ̂OLS , V̂ (θ̂OLS)22 is the lower right p x p submatrix of

V̂ (θ̂OLS), p is the dimension of γ, and m is the number of PSUs minus the number of strata

for the sample. Under the null hypothesis that γ = 0, F (p,m) is approximately distributed as

an F with p and m degrees of freedom. This result follows from result (17) in Fuller (1984).
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APPENDIX C TEST FOR WEIGHTED AND UNWEIGHTED

ESTIMATORS FOR THE POPULATION-LEVEL MODEL

In this appendix, we give a test to compare equal-weight estimators and survey-weighted

estimators for parameters of the population-level model given in Section 3.2.3 of Chapter 3.

In the first part of the appendix, we develop the test procedure. In the second part of the

appendix, we give test results for the population-level model given in Section 3 of Chapter 3,

which was estimated using the preliminary first quarter sample of females from PAMS.

Test Procedure

Consider the method developed in Section 3.2 of Chapter 3 and assume that a complex

sample design is used to select n individuals into the sample. For the population-level model

given by (3.20) in Chapter 3, let λ̂1 be the EGLS estimator of the population-level model

parameter vector λ given by (3.22) in Chapter 3 and computed using equal weights (i.e.,

wi = 1 for all i), and let λ̂2 be the EGLS estimator of λ computed using survey weights. We

consider a test for E{λ̂1− λ̂2} = 0 to determine if the results are similar for equal weights and

survey weights. A test statistic to test for E{λ̂1 − λ̂2} = 0 is

F = (p)−1(λ̂1 − λ̂2)
′[V̂11 + V̂22 − V̂12 − V̂21]

−1(λ̂1 − λ̂2), (C.1)

where

V̂ {λ̂full} =

 V̂11 V̂12

V̂21 V̂22


is an estimated variance of

λ̂full = (λ̂′1, λ̂
′
2)
′
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and p is the dimension of λ. Under the null hypothesis that E{λ̂1 − λ̂2} = 0 and given

regularity conditions, the F statistic in (C.1) is approximately distributed as an F distribution

with p and n− 2p degrees of freedom.

The variance required for the test can be estimated using jackknife variance estimation. For

a stratified sample design, let H be the number of strata, let nh be the number of individuals

sampled from stratum h, and let Nh be the total number of individuals in stratum h, for

h = 1, . . . ,H. The jackknife variance is estimated by computing n replicate estimators of

λ̂full. Let

λ̂
(hi)
full =

 λ̂
(hi)
1

λ̂
(hi)
2


be the hith replicate estimator of λ̂full, where λ̂

(hi)
1 is the hith replicate of λ̂1 and λ̂

(hi)
2 is the

hith replicate of λ̂2. The estimator λ̂
(hi)
2 is computed using the hith set of replicate survey

weights defined by deleting individual i in stratum h. The replicate survey weight of individual

i′ in stratum h′ from the hith set of replicate weights is

w∗h′i′ =



0 if h′ = h and i′ = i

(c1/c2)wh′i′ if h′ = h and i′ 6= i

wh′i′ if h′ 6= h

(C.2)

where wh′i′ is the original survey weight of individual i′ in stratum h′,

c1 =

nh′∑
i′=1

wh′i′ ,

and c2 = c1 − whi. The hith replicate equal weight of individual i′ in stratum h′ is given by

setting wh′i′ = 1 in (C.2) for all h′i′ 6= hi. The replicate estimators are computed just as

the original estimators, but are computed with the replicate weights instead of the original

weights. The estimated jackknife variance for the stratified design is

V̂ {λ̂full} =

H∑
h=1

N−1h (Nh − nh)n−1h (nh − 1)

nh∑
i=1

(λ̂
(hi)
full − λ̂full)(λ̂

(hi)
full − λ̂full)

′, (C.3)

where the multipliers N−1h (Nh−nh)n−1h (nh−1) are included to account for the sample selection

within strata. See Section 4.2 of Fuller (2009).
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Application to PAMS Data

The test described above is applied to the population-level model in Section 3 of Chapter

3 using the preliminary sample of females from PAMS. See Section 3.3 for a description of

the sample and a description of the population-level model. Let λ̂1 be the estimated vector of

model parameters for the population-level model computed with equal weights and let λ̂2 be

the estimated vector of model parameters for the model computed with the survey weights for

the PAMS sample. The estimated parameters are given in Table C.1. A jackknife variance for

λ̂full = (λ̂′1, λ̂
′
2)
′ is computed using equation (C.3), where the replicate jackknife estimators

of λ̂′1 and λ̂′2 are computed for the stratified PAMS design. The standard errors from the

jackknife variance are given in Table C.1.

Table C.1 Parameter estimates for λ̂1 and λ̂2

Parameter Estimates (SEs) for λ̂1 Estimates (SEs) for λ̂2

µ0 7.7940 (.0103) 7.7849 (.0145)

µy 8.0564 (.0144) 8.0477 (.0222)

100θ -0.2409 (.1060) -0.2467 (.1147)

β1 0.9950 (.0914) 1.1310 (.1497)

100β3 -1.7035 (.6221) -2.2653 (.8841)

100σ2t 1.9868 (.2553) 1.5915 (.3291)

100σ2d 0.4949 (.1105) 0.6523 (.2672)

100σ2u 0.5186 (.1231) 0.5667 (.1989)

100σ2e 0.6175 (.1277) 0.5264 (.2870)

100σ2r 2.0934 (.3062) 2.0306 (.3643)

The values of nh and Nh used to compute the jackknife variance are given in Table C.2. The

F statistic given by (C.1) is computed to be 1.203 for the PAMS sample on 10 and 151 degrees

of freedom with a p-value of 0.293. Given these results, there is little evidence suggesting that

the equal-weight and survey-weighted estimators of the population-level model are different

for the preliminary female PAMS sample.
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Table C.2 Sample sizes and population control totals for females in the 8

PAMS strata (control totals are from the 2000 U.S. Census)

Stratum Sample Size Population Size

Black Hawk (low minority) 32 30543

Black Hawk (high minority) 24 7979

Dallas (low minority) 6 6914

Dallas (high minority) 26 5424

Marshall (low minority) 5 8178

Marshall (high minority) 10 3609

Polk (low minority) 27 95948

Polk (high minority) 41 20082
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